Postemergence Winter Weed Control in Bermudagrass (Cynodon dactylon) Turf

Weed Science ◽  
1980 ◽  
Vol 28 (4) ◽  
pp. 385-392 ◽  
Author(s):  
B. J. Johnson

Several herbicides were applied in January, February, and March with a comparison of the intervals of treatment of 2 and 4 weeks after the initial treatment each month for postemergence control of winter annual weeds in bermudagrass [Cynodon dactylon(L.) Pers.] turf. Glyphosphate [N-(phosphonomethyl)glycine] treatments applied at 2-week intervals with the initial treatment made in January or February controlled a higher percentage of annual bluegrass (Poa annuaL.) than when applied in March. Hop clover (Trifolium agrariumL.) control was also higher when glyphosate was initially applied in January or February than when applied in March regardless of time interval between first and second treatment. Combination treatments of (a) 2,4-D [(2,4-dichlorophenoxy)acetic acid] + dicamba (3,6-dichloro-o-anisic acid) and (b) 2,4-D + mecoprop {2-[(4-chloro-o-tolyl)oxy] propionic acid} + dicamba applied at 2-week intervals with the initial treatment made in January or February controlled more corn speedwell (Veronica arvensisL.) and hop clover than when applied in March. Highest henbit (Lamium amplexicauleL.) control was obtained from the combination 2,4-D treatments made at 4-week intervals when initial treatment was made in February and March. Weed control was not influenced by dates and interval of repeated treatments with either paraquat (1,1′-dimethyl-4,4′-bipyridinium ion) or atrazine [2-chloro-4-(ethylamino)-6-(isopropylamino)-s-triazine] treatments. Germination and regrowth of weeds were greater in plots treated with glyphosate and paraquat initially in January or February than other herbicide-treated plots. Weeds were not reestablished in any of the atrazine-treated plots. Paraquat and combinations of 2,4-D + dicamba or 2,4-D + mecoprop + dicamba injured bermudagrass when applied initially in January and February even though they were applied to turf that appeared dormant. All herbicides injured bermudagrass more when applied to semi-dormant turf in March than to dormant turf in January or February. Atrazine affected bermudagrass less than any of the other herbicides tested when initial treatment was applied in March to semi-dormant turf.

Weed Science ◽  
1976 ◽  
Vol 24 (1) ◽  
pp. 140-143 ◽  
Author(s):  
B. J. Johnson

The control of winter annuals in dormant bermudagrass [Cynodon dactylon(L.) Pers. ‘Common’] has not been consistent with available herbicides. Experiments were conducted to evaluate rates and number of glyphosate [N-(phosphonomethyl)glycine] applications for control of winter annuals growing in dormant bermudagrass. Glyphosate applied as a single treatment at 0.6 kg/ha consistently controlled more parsley-piert (Alchemilla microcorpaBoissier Reuter), corn speedwell (Veronica arvensisL.), and henbit (Lamium amplexicauleL.) than paraquat (1,1′-dimethyl-4,4′-bipyridinium ion) or combination treatments of 2,4-D [(2,4-dichlorophenoxy)acetic acid) + mecoprop 2[(4-chloro-o-tolyl)oxy] propionic acid + dicamba (3,6-dichloro-o-anisic acid). There was no difference between glyphosate and paraquat control of annual bluegrass (Poa annuaL.) and common chickweed [Stellaria media(L.) Cyrillo]. Glyphosate treatments did not injure the bermudagrass the following spring.


2012 ◽  
Vol 22 (1) ◽  
pp. 131-136 ◽  
Author(s):  
Filippo Rimi ◽  
Stefano Macolino ◽  
Bernd Leinauer

In transitional environments, turf managers and sod producers of warm-season grasses face the issue of winter annual weeds that can dominate dormant turf stands through the winter until late spring. The use of glyphosate to control weeds in dormant bermudagrass (Cynodon dactylon) has been well documented, but information is lacking about its effect on spring green-up of other warm-season grasses. A field study was conducted on two commercial sod farms in northern Italy (Expt. 1) to evaluate the effects of glyphosate applied on two different winter dates on weed control and spring green-up of ‘Zeon’ manilagrass (Zoysia matrella). A second study was carried out at the experimental agricultural farm of Padova University (Expt. 2) to assess the effects of a winter application of glyphosate on weed control and spring green-up of ‘Yukon’ bermudagrass and ‘Companion’ zoysiagrass (Zoysia japonica). Each experiment was conducted from Jan. to June 2011, and glyphosate was applied at 1.1 kg·ha−1 on 8 and 21 Feb. in Expt. 1 and on 8 Feb. in Expt. 2. Spring recovery was evaluated by periodical visual ratings of green turf cover and by collecting normalized difference vegetation indices (NDVIs). Weed injury was visually evaluated on all plots 7 weeks after the 8 Feb. glyphosate application. The visual ratings of green cover were strongly and positively correlated with NDVI measurements. Glyphosate applied in February as a single treatment effectively controlled winter weeds in ‘Zeon’ manilagrass (Expt. 1) and ‘Yukon’ bermudagrass (Expt. 2) without negatively affecting spring green-up. In contrast, spring green-up of ‘Companion’ zoysiagrass (Expt. 2) was delayed by the application of glyphosate.


Weed Science ◽  
1983 ◽  
Vol 31 (6) ◽  
pp. 771-774 ◽  
Author(s):  
B. J. Johnson

Combination treatments of 2,4-D [(2,4-dichlorophenoxy)acetic acid] + mecoprop {2-[(4-chloro-o-tolyl) oxy] propionic acid} + dicamba (3,6-dichloro-o-anisic acid) injured actively growing bermudagrass [Cynodon dactylon(L.) Pers. # CYNDA] immediately after treatment. Treatments made at the normal (1.1 + 0.6 + 0.1 kg ai/ha) rate in August, September, or October, did not affect winter survival. A triple rate (3.3 + 1.8 + 0.3 kg/ha) delayed growth of ‘Tifgreen’ and ‘Tifdwarf’ more the following April than ‘Tifway’ and ‘Ormond’. Due to a reduction in turf stand from herbicide treatments, the cover of common chickweed [Stellaria media(L.) Cyrillo # STEME] was higher in plots to which herbicides were applied in August or September than in untreated plots. The cover of weeds was lower in Tifway and Ormond plots than in Tifgreen and Tifdwarf plots.


Weed Science ◽  
1984 ◽  
Vol 32 (6) ◽  
pp. 819-823 ◽  
Author(s):  
B. Jack Johnson

Bermudagrass [Cynodon dactylon(L.) Pers. ‘Tifway’] injured by MSMA (monosodium methanearsonate) plus metribuzin [4-amino-6-tert-butyl-3-(methylthio)-as-triazin-5(4H)-one] or 2,4-D [(2,4-dichlorophenoxy)acetic acid] plus mecoprop {2-[(4-chloro-o-tolyl)oxy] propionic acid} plus dicamba (3,6-dichloro-o-anisic acid) recovered more rapidly when nitrogen (N) was applied in sequence with the herbicides than when no N was applied. Bermudagrass recovery was faster with less injury within 2 weeks after herbicide treatment when N was applied at the first MSMA plus metribuzin treatment or when N was applied at 2 weeks after the first 2,4-D plus mecoprop plus dicamba treatment. Turf quality at 4 weeks or later was consistently as good or better in plots where N was applied at 2 weeks after the first application of either herbicide combination than when N was applied earlier.


Weed Science ◽  
1985 ◽  
Vol 33 (2) ◽  
pp. 238-243 ◽  
Author(s):  
B. Jack Johnson ◽  
Robert E. Burns

Oxadiazon [2-tert-butyl-4(2,4-dichloro-5-isopropoxyphenyl)-δ2-1,3,4-oxadiazolin-5-one] applied to dormant bermudagrass [Cynodon dactylon(L.) Pers. ‘Tifway’ ♯ CYNDA] retarded early foliar growth more than other herbicides evaluated. When bensulide [O,O-diisopropyl phosphorodithioateS-ester withN-(2-mercaptoethyl)benzenesulfonamide] treatments were delayed until after bermudagrass initiated spring growth, foliar growth and quality were generally lower than when the treatments were applied to dormant turf. Retardation of early foliar bermudagrass growth by 2,4-D [(2,4-dichlorophenoxy)acetic acid] + mecoprop {2-[(4-chloro-o-tolyl)oxy] propionic acid} + dicamba (3,6-dichloro-o-anisic acid) was generally the same whether applied to dormant or semidormant turf. This combination of herbicides reduced the quality and density of bermudagrass when applied to growing but not to dormant turf. Atrazine [2-chloro-4-(ethylamino)-6-(isopropylamino)-s-triazine] did not retard bermudagrass growth or affect density whether applied to dormant or semidormant turf, but turf quality was slightly lower when atrazine was applied to semidormant turf.


Weed Science ◽  
1983 ◽  
Vol 31 (6) ◽  
pp. 883-888 ◽  
Author(s):  
B. J. Johnson

Tank mixtures of herbicides for control of emerged winter weeds and preemergence control of large crabgrass [Digitaria sanguinalis(L.) Scop. # DIGSA] were evaluated on bermudagrass [Cynodon dactylon(L.) Pers. ‘Common’ # CYNDA] fairways over a 2-yr period. Glyphosate [N-(phosphonomethyl)glycine] applied at 0.28 kg ai/ha in tank mixtures with DCPA (dimethyl tetrachloroterephthate) at 11 kg ai/ha controlled a higher percentage of parsley-piert (Alchemilla microcarpaBoiss. Reut. # APHMI) than either herbicide alone. When applied for spur weed (Solivaspp.) control, DCPA was antagonistic in the tank mixture with simazine [2-chloro-4,6-bis(ethylamino)-s-txiazine]. During one yr of the 2-yr study period, control of large crabgrass was less in plots treated with combination of DCPA and glyphosate than in plots treated with DCPA alone. Less large crabgrass control was obtained in plots treated with bensulide [O,O-diisopropyl phosphorodithioateS-ester withN-(2-mercaptoethyl)benzenesulfonamide] at 11 kg ai/ha in combinations with either paraquat (1,1′-dimethyl-4,4′-bipyridinium ion) or 2,4-D [(2,4-dichlorophenoxy)acetic acid] plus mecoprop {2-[(4-chloro-o-tolyl)oxy]propionic acid} plus dicamba (3,6-dichloro-o-anisic acid) than when treated only with bensulide.


HortScience ◽  
1992 ◽  
Vol 27 (6) ◽  
pp. 627g-628
Author(s):  
Martin L. Kaps ◽  
Marilyn B. Odneal

Preemergent herbicides were applied to vineyards in the southcentral Missouri Ozark region. These were applied at full label rate in the fall or in the spring, at half rate in the fall and again in the spring, and as tank-mixes in the spring. Days of acceptable annual weed control (30% or less cover) beyond the untreated control were determined for these application methods over three years. The fall applications were effective at controlling winter annual weeds and early summer annual weed growth the following season. By mid summer the fall applied preemergents lost residual activity. Splitting the label rate between fall and spring was no better than a full rate spring application at increasing the days of acceptable summer annual weed control. Single preemergent spring application performed as well as tank-mixes.


1996 ◽  
Vol 10 (4) ◽  
pp. 947-950
Author(s):  
James M. Taylor ◽  
G. Euel Coats

A study was conducted to evaluate effects of application timing and sulfometuron rate on weed control and bermudagrass tolerance. Sulfometuron was applied at rates from 13 to 105 g ai/ha and compared to 1120 g ae/ha 2,4-D amine. Control of Italian ryegrass and common vetch was not affected by October, November, December, or March application dates and 39 to 105 g/ha sulfometuron provided equivalent control of both species 6 mo after the initial treatment. Percent green cover of bermudagrass at 6 mo after the initial treatment was 22% or less following March applications compared to 36% or greater when applied in October, November, or December. More bermudagrass injury occurred following March treatments of 52 g/ha or greater sulfometuron where green cover was 14% and less compared to 22 and 30% green cover following 13 g/ha sulfometuron or 1120 g/ha 2,4-D amine, respectively.


Weed Science ◽  
1975 ◽  
Vol 23 (2) ◽  
pp. 110-115 ◽  
Author(s):  
B. J. Johnson

In field studies, herbicides were applied at various times to different plots during the summer and fall at two locations over a 3-year period to control winter weeds in nonoverseeded bermudagrass [Cynodon dactylon (L.) Pers.] turf. Annual bluegrass (Poa annua L.) control was higher at Griffin for all herbicide applications made in October when compared with herbicide applications made at the same rate in July, August, or September. At Lawrenceville, optimum annual bluegrass control was obtained when bensulide [O,O-diisopropyl phosphorodithioate S-ester with N-(2-mercaptoethyl) benzenesulfonamide] was applied in August, terbutol (2,6-di-tert-butyl-p-tolyl methylcarbamate) applied in either August or September, benefin (N-butyl-N-ethyl-α,α,α-trifluoro −2,6 dinitro-p-toluidine) applied in September, pronamide [3,5-dichloro-N-(1,1-dimethyl-2-propynyl) benzamide] applied in either September or October, and simazine [2-chloro-4,6-bis(ethylamino)-s-triazine] applied in October. DCPA (dimethyl tetrachloroterephthalate) did not control annual bluegrass satisfactorily at either location, regardless of dates of application. The control of several broadleaf weeds was generally higher when herbicides were applied in October at Griffin and when applied in September or October at Lawrenceville when compared with earlier treatments. Bensulide applied in October was the only herbicide that satisfactorily controlled parsley-piert (Alchemilla microcarpa Boissie Reuter).


2013 ◽  
Vol 27 (1) ◽  
pp. 138-142 ◽  
Author(s):  
James T. Brosnan ◽  
Gregory K. Breeden

Common bermudagrass is a problematic weed within tall fescue turfgrass. Field research was conducted from 2010 to 2012 in Knoxville, TN, evaluating the efficacy of sequential applications of topramezone (12.5 and 25 g ha−1), triclopyr (1,120 g ha−1), and mixtures of topramezone + triclopyr for bermudagrass control in tall fescue turf. Sequential applications of fenoxaprop + triclopyr (100 + 1,120 g ha−1) were included for comparison. Three applications of each treatment were applied at 21-d intervals during July, August, and September of 2010 and 2011. Plots were stripped to receive tall fescue interseeding at 0 or 490 kg ha−1 during September 2010 and 2011. Bermudagrass control with topramezone + triclopyr mixtures was greater than topramezone or triclopyr applied alone 14 wk after initial treatment (WAIT) each year. In the second year of this study, topramezone + triclopyr mixtures controlled bermudagrass 27 to 50% compared to 27% for fenoxaprop + triclopyr by 52 WAIT. However, bermudagrass control with topramezone + triclopyr mixtures increased to 88 to 92% by 52 WAIT when accompanied with tall fescue interseeding at 490 kg ha−1. Future research should evaluate effects of interseeding on the efficacy of different herbicides for weed control in cool- and warm-season turf.


Sign in / Sign up

Export Citation Format

Share Document