Response of Soybeans (Glycine max) to Planting in Untilled, Weedy Seedbed on Clay Soil

Weed Science ◽  
1983 ◽  
Vol 31 (1) ◽  
pp. 93-99 ◽  
Author(s):  
Larry G. Heatherly ◽  
C. Dennis Elmore

Soybeans [Glycine max(L.) Merr.] were planted in an untilled, stale seedbed and conventionally tilled seedbed of Sharkey clay (Vertic Haplaquept) at Stoneville, Mississippi, in 1979 and 1980 to determine the feasibility of the stale -seedbed approach for soybean production in the Mississippi River Delta. Chemical weed control included applications of preplant, preemergence, and postemergence herbicides. Prickly sida (Sida spinosaL.) was the dominant weed in all tillage and weed-control systems. Perennial species were observed at harvest mostly in the stale - seedbed plots. Preemergence herbicides reduced the total weight of weeds per plot. Conventional seedbed preparation caused delays in planting of 3 weeks or more. In the presence of adequate soil moisture, yields of ‘Bedford,’ ‘Tracy’, and ‘Bragg’ cultivars from the stale - seedbed planting and areas that had been treated preemergence were always equal to or greater than yields from the tilled - seedbed plantings and areas that had been treated postemergence. In 1980, the hot, dry conditions of the growing season apparently negated any effect from either earlier planting or preemergence vs. post-emergence weed control.

1989 ◽  
Vol 16 (2) ◽  
pp. 87-91 ◽  
Author(s):  
T. C. Mueller ◽  
P. A. Banks

Abstract RE-40885 (5-(methylamino)-2-phenyl-4-3-(trifluoromethyl phenyl)-3(2H)-furanone), a newly developed herbicide with soil and foliar activity, was evaluated for weed control in peanuts (Arachis hypogea L.). RE-40885 applied to the soil or foliage provided excellent Florida beggarweed (Desmodium tortuosum (Sw.) DC.) and prickly sida (Sida spinosa L.) control at rates of 0.56 to 1.12 kg ai/ha. Sequential applications of RE-40885 were needed to achieve > 90% sicklepod (Cassia obtusifolia L.) control. Texas panicum (Panicum texanum Buckl.) was not adequately controlled by any of the RE-40885 treatments evaluated. Peanuts were not injured by RE-40885 at any of the evaluated rates or application times. The combination of RE-40885 and 2,4-DB applied early postemergence improved sicklepod control 8 weeks after planting when compared to either RE-40885 or 2,4-DB applied alone. The combination of R E-40885 and alachlor applied at peanut emergence improved morningglory (Ipomoea spp.) control 8 weeks after planting and increased peanut yield when compared to either applied alone. All treatments containing RE-40885 resulted in peanut yields that were significantly better than nontreated weedy control plots.


Weed Science ◽  
1976 ◽  
Vol 24 (2) ◽  
pp. 202-204 ◽  
Author(s):  
Larry S. Jeffery ◽  
John Connell ◽  
Tom McCutchen ◽  
Joseph R. Overton

Three preemergence and four postemergence herbicides were compared for control of prickly sida (Sida spinosaL.) in soybeans (Glycine maxMerrill) and for level of phytotoxicity to soybeans. As a preemergence herbicide, chlorbromuron [3-(4-bromo-3-chlorophenyl)-1-methoxyl-1-methylurea] provided better control of prickly sida than did linuron [3-(3,4-dichlorophenyl)-1-methoxyl-1-methylurea] which was more consistently effective than was naptalam (N-1-naphthylphthalamic acid) plus dinoseb (2-sec-butyl-4,6-dinitrophenol). Chlorbromuron applied as a preemergence treatment caused slight crop injury. In most cases preemergence treatments followed by cultivation were effective in providing season-long control. The descending order of effectiveness for prickly sida control by the postemergence herbicides was: chlorbromuronmetribuzin [4-amino-6-tert-butyl-3-(methylthio)-as-triazine-5(4H)one] > prometryne [2,4-bis(isopropylamino)-6-(methylthio)-s-triazine] > dinoseb. Prometryne as a postemergence treatment following a preemergence herbicide increased prickly sida control more consistently than dinoseb used as the postemergence treatment. However, prometryne caused more crop injury than did dinoseb.Comparison of soybean yields from the weedy and weed free checks show that prickly sida caused only 9 to 14% yield losses in soybeans.


Weed Science ◽  
1983 ◽  
Vol 31 (1) ◽  
pp. 63-67 ◽  
Author(s):  
P. E. Keeley ◽  
R. J. Thullen ◽  
J. H. Miller ◽  
C. H. Carter

Six cropping/weed control systems were evaluated from 1978 to 1980 for the control of yellow nutsedge (Cyperus esculentusL.). Supplementing cultivation of cotton (Gossypium hirsutumL. ‘Acala SJ-2′) with either preplant applications of fluridone {1 - methyl - 3 - phenyl - 5 - [3 - (trifluoromethyl)phenyl] -4(1H-pyridinone} or two hoeings for 2 yr preceding cotton treated with DSMA (disodium methanearsonate) and MSMA (monosodium methanearsonate) reduced populations of viable yellow nutsedge tubers 98 to 99% within 3 yr. Dry- or wet - fallowing plus tillage after barley (Hordeum vulgareL. ‘Kombyne’), and double cropping potatoes (Solanum tuberosumL. ‘White Rose’) treated with EPTC (S-ethyl dipropylthiocarbamate) with soybeans [Glycine max(L.) Merr. ‘Williams’] treated with alachlor [2-chloro - 2′, 6’ - diethyl -N- (methoxymethyl)acetanilide] for 2 yr preceding cotton, reduced populations of tubers 98 to 99% within 3 yr. A similar reduction of tubers (97%) was obtained by double cropping potatoes with milo [Sorghum bicolor(L.) Moench. ‘NK- 265′] for 2 yr preceding cotton.


Weed Science ◽  
1972 ◽  
Vol 20 (1) ◽  
pp. 16-19 ◽  
Author(s):  
L. M. Wax

Delayed planting or “stale seedbed” for weed control in close-drilled (20-cm rows) soybeans [Glycine max(L.) Merr. ‘Amsoy’] was evaluated for 3 years. The system combined final seedbed preparation 3 to 6 weeks before planting with herbicide application at planting time. The best control of six weed species and highest soybean yields were obtained bya,a,a-trifluoro-2,6-dinitro-N,N-dipropyl-p-toluidine (trifluralin) application at the time of seedbed preparation followed by 3-(3,4-dichlorophenyl)-1-methylurea (linuron) application at planting and by linuron application at planting without the early trifluralin application. Applications of 1,1′-dimethyl-4,4′-bipyridinium ion (paraquat) at planting, either with or without trifluralin treatments, resulted in less weed control and lower soybean yields than comparable treatments with linuron. However, even the best treatments failed to provide the weed control necessary to prevent substantial soybean yield reduction in heavy infestations of weeds that emerge in large numbers after planting, and that resist the phytotoxic action of the herbicides.


1988 ◽  
Vol 2 (3) ◽  
pp. 355-363 ◽  
Author(s):  
Jerome M. Green ◽  
Timothy T. Obrigawitch ◽  
James D. Long ◽  
James M. Hutchison

Metribuzin and the ethyl ester of chlorimuron were evaluated alone and in combination for preemergence broadleaf weed control in soybeans. Neither herbicide alone controlled all broadleaf weeds tested, but combinations showed both complementary and additive action. Two field studies quantified these interactions on broadleaf weeds and showed that low rates of either herbicide alone controlled Pennsylvania smartweed and redroot pigweed. Metribuzin was more effective than chlorimuron in controlling prickly sida and hemp sesbania, while chlorimuron was more effective on common cocklebur, sicklepod, and ivyleaf and pitted morningglories. Additive action was most important on velvetleaf, sicklepod, annual morningglories, and hemp sesbania. Because the components were both additive and complementary, a range of mixture rates and ratios were more effective for weed control than either herbicide alone.


1994 ◽  
Vol 8 (1) ◽  
pp. 159-164 ◽  
Author(s):  
Andrew J. Lanie ◽  
James L. Griffin ◽  
P. Roy Vidrine ◽  
Daniel B. Reynolds

Barnyardgrass and morningglory control POST with glufosinate at 840 g a.i./ha 28 d after treatment was 79 to 85% and 83 to 90%, respectively, when no more than 35 d elapsed between initial spring soil tillage and herbicide application. For the same rate of glufosinate, prickly sida and hemp sesbania were controlled 68 and 92%, respectively. Comparable barnyardgrass control was obtained with glufosinate at 560 and 840 g/ha, which was greater than at 420 g/ha. Hemp sesbania control was similar for all rates of glufosinate. In comparison, paraquat at 1050 g a.i./ha controlled 40 to 65% barnyardgrass, 44 to 75% morningglory, 41% prickly sida, and 92% hemp sesbania. With 840 g a.i./ha glyphosate and SC-0224, barnyardgrass, morningglory, prickly sida, and hemp sesbania were controlled 55 to 89%, 55 to 81%, 45 to 61%, and 56 to 68%, respectively. Soybean yield was 5.8, 7.6, 6.0, and 5.9 times greater than the nontreated check for 1050 g/ha paraquat and 840 g/ha glufosinate, glyphosate, and SC-0224, respectively.


1991 ◽  
Vol 18 (1) ◽  
pp. 26-30 ◽  
Author(s):  
John W. Wilcut ◽  
F. Robert Walls ◽  
David N. Horton

Abstract Field experiments were conducted at the Tidewater Agric. Exp. Station, Suffolk, VA in 1988 and 1989 to evaluate imazethapyr [(±)-2-[4,5-dihydro-4-methyl-4-(1-methylethyl)-5-oxo-1H-imidazol-2-yl]-5-ethyl-3-pyridine-carboxylic acid]for broadleaf weed control in peanuts (Arachis hypogaea L.). Imazethapyr was applied preplant-incorporated (PPI), preemergence (PRE), at ground-cracking (GC), and postemergence (POT) at rates of 0.036, 0.071, or 0.105 kg ai ha-1. Several sequential imazathapyr systems were also included. The standard of pendimethalin (N-ethylpropyl)-3, 4-dimethyl-2,6-dinitrobenzenamine) PPI, metolachlor(2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide) PRE, and acifluorfen (5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-nitrobenzoic acid) plus bentazon (3-(1-methyethyl)-(1H)-2,1,3-benzothiadiazin-4(3H)-one 2, 2-dioxide) POT was included for comparative purposes. Imazethapyr applied either PPI or PRE at 0.071 or 0.105 kg ha-1 provided <90% spurred anoda (Anoda cristata (L.) Schlecht.), control and <96% prickly sida (Sida spinosa L.), control. Eclipta (Eclipta prostrata L.) control was 95% when imazathapyr was applied PRE at 0.105 kg ha-1. Greater than 90% annual morningglory (Ipomoea spp.) control was only achieved with imazethapyr applied PPI or PRE at 0.105 kg ha-1. The standard provided complete control of eclipta, and 51%, 92%, and 94% control of spurred anoda (Anoda cristata (L.) Schlecht.), prickly sida (Sida spinosa L.), and annual morningglories, respectively. Several imazethapyr systems yielded equivalent to the standard. Averaged across all rates, imazathapyr applied PPI yielded 4110 kg ha-1, PRE = 3860 kg ha-1, GC = 3680 kg ha-1, and POT = 3370 kg ha-1. Several imazethapyr systems provided net returns equivalent to the standard. Corn grown the following year was not injured by any imazethapyr treatment to peanuts the previous year.


HortScience ◽  
1996 ◽  
Vol 31 (5) ◽  
pp. 761b-761
Author(s):  
Wayne C. Porter

High annual rainfall and frequent torrential deluges have always made weed control a tenuous affair in Louisiana. Herbicide leaching and soil erosion often take preemergence herbicides to the nether regions. Before the time of postemergent grass herbicides, frequent cultivation was the only method to try to salvage the sweetpotato crop when preemergence weed control was lost. For many years, the most serious weed problems were prickly sida, cocklebur, and purple nutsedge with occasional hotspots of morning-glory. However, due to the change in herbicides used, the species of problem weeds have shifted to rice flatsedge, yellow and purple nutsedge, carpetweed, and various pigweeds. Before the registration of Command herbicide for use in sweetpotatoes, many sweetpotato growers used herbicides that effectively controlled or suppressed the current problem weeds. With the widespread use of Command, prior problem weed species are effectively controlled, but these other problem weeds are released.


Weed Science ◽  
1972 ◽  
Vol 20 (6) ◽  
pp. 548-553 ◽  
Author(s):  
J. V. Parochetti ◽  
R. W. Feeny ◽  
S. R. Colby

Greenhouse and field studies were conducted with 3-[p-(p-chlorophenoxy)phenyl]-1,1-dimethylurea (chloroxuron). Tolerant soybean(Glycine max(L.) Merr.) and susceptible tall morningglory(Ipomoea purpurea(L.) Roth.) and ivyleaf morningglory(I. hederacea(L.) Jacq.) were studied with both root and foliar chloroxuron applications. Soybean tolerance to chloroxuron was reduced when treatments occurred in the unifoliate stage; greatest soybean tolerance was noted when soybeans were treated in either the cotyledonary or third trifoliage stage. Tall and ivyleaf morningglory were susceptible to chloroxuron until about 21 days of age (five true leaves), after which resistance increased. Root applications of chloroxuron were more phytotoxic than foliar applications for soybeans and both species of morningglory. In a 3-year study in the field, the following sequential herbicide treatments of either α,α,α-trifluoro-2,6-dinitro-N,N-dipropyl-p-toluidine (trifluralin), 4-(methylsulfonyl-2,6-dinitro-N,N-dipropylaniline (nitralin),S-propyl dipropylthiocarbamte (vernolate), or 3-(3,4-dichlorophenyl)-1-methoxy-1-methylurea (linuron) applied preemergence plus chloroxuron postemergence resulted in higher soybean yields than any single herbicide treatment. Weed control was better with the sequential combinations. All sequential combinations with chloroxuron caused soybean injury. Greatest soybean injury occurred when chloroxuron was applied in the first and second trifoliate stage than in the third trifoliate stage. Vernolate alone caused some injury in certain years.


1991 ◽  
Vol 5 (2) ◽  
pp. 416-420 ◽  
Author(s):  
John W. Wilcut

Field experiments were conducted in 1988 and 1989 to evaluate timing of POST herbicide application in peanut for annual broadleaf weed control, peanut yield, and net returns. Bentazon tank-mixtures with either acifluorfen or paraquat controlled common lambsquarters, prickly sida, and morningglory species equally when applied either at ground-cracking (GC) or 2 wk after ground-cracking (2WGC). Paraquat controlled common lambsquarters least (32 to 33%). Bentazon plus acifluorfen plus BCH 81508S controlled 82% common lambsquarters at 2WGC compared with 66% control from bentazon plus acifluorfen plus a crop oil concentrate. Lactofen controlled 86% common lambsquarters when applied at GC compared to 34% at 2WGC. All applications applied at 4 wk after GC (4WGC) controlled essentially no annual broadleaf weeds. Higher yields and net returns were generally obtained with earlier herbicide applications. Bentazon tank-mixtures with acifluorfen provided equivalent peanut yields and net returns for GC and 2WGC applications.


Sign in / Sign up

Export Citation Format

Share Document