Weed flora and the relative importance of site, crop, crop rotation, and nitrogen

Weed Science ◽  
1998 ◽  
Vol 46 (1) ◽  
pp. 30-38 ◽  
Author(s):  
Torsten N. Andersson ◽  
Per Milberg

Weed species composition and density were recorded in three identical field experiments established 26 to 30 yr ago in southern Sweden. Each experiment compared three 6-yr crop rotations and four rates of nitrogen application. The rotations differed by having (1) a 2-yr rotational grassland, (2) a 2-yr mixed rotational grassland (legume/grass), or (3) spring wheat followed by fallow. Other crops in the rotations were winter turnip rape, winter wheat, spring oats, and spring barley. Using multivariate analyses, the relative importance of site, crop, crop rotation, and nitrogen application rate on the weed flora was determined. The greatest difference was found between sites, and the second most important factor was crop species. Nitrogen application rate weakly influenced the weed flora, while differences between crop rotations were hardly detectable.

2021 ◽  
Vol 270 ◽  
pp. 108194
Author(s):  
John Snider ◽  
Glendon Harris ◽  
Phillip Roberts ◽  
Calvin Meeks ◽  
Daryl Chastain ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jinfeng Peng ◽  
Yuehua Feng ◽  
Xiaoke Wang ◽  
Jie Li ◽  
Guiling Xu ◽  
...  

AbstractA field experiment employing the rice cultivars Qyou6 and Yixiangyou2115 as materials and different nitrogen application rates was conducted in Huangping County, Guizhou Province in 2019 to determine the effects of nitrogen application rate on photosynthetic pigments, leaf fluorescence characteristics, yield, and their interrelations in indica hybrid rice. The results showed that photosynthetic pigment contents generally increased with increasing nitrogen application rate. As the nitrogen rate increased, the maximal quantum yield of PSII (Fv/Fm), actual quantum yield of PSII (ΦPSII), and relative electron transfer rate at PSII (ETR) first decreased and then increased at the booting stage; Fv/Fm and ΦPSII decreased while ETR first increased and then decreased at the heading stage; nevertheless, Fv/Fm and ΦPSII first decreased and then increased but ETR was just the opposite at the maturity stage. Non-photochemical quenching coefficient (qN) and quantum yield of regulatory energy dissipation at PSII (Y(NPQ)) first increased and then decreased whereas quantum yield of non-regulatory energy dissipation at PSII (Y(NO)) first decreased and then increased at the booting, heading, and maturity stages with increasing nitrogen application rate. Photochemical quenching coefficient (qP) showed an increasing trend as the nitrogen rate increased in the range of 150–300 kg/ha at the heading and maturity stages. Photosynthetic pigments, leaf fluorescence characteristics, and yield and its components were significantly correlated. First, chlorophylls a and b were significantly negatively correlated with Fv/Fm while significantly positively correlated with qP at the heading stage. Secondly, Carotenoids were significantly positively correlated with the effective panicle number (EPN) at the booting stage while significantly negatively correlated with the spikelets per panicle (SPP) at the heading stage. Chlorophyll a and carotenoids were significantly positively correlated with EPN but significantly negatively correlated with spikelet filling (SF) at the maturity stage. In addition, qP was significantly negatively correlated with EPN at the booting stage. At the heading stage, Fv/Fm and Y(NO) were significantly negatively correlated with EPN and SPP, respectively, and Fv/Fm and ΦPSII were significantly positively related to SF. Moreover, qP was extremely significantly positively related to EPN whereas Fv/Fm was extremely significantly negatively correlated with grain yield at the maturity stage. Appropriate nitrogen application rates can enhance photosynthetic pigment contents, improve the photochemical efficiency and proportion of the open part of the reaction center of PSII, and promote the quantum efficiency and self-protection ability of PSII, thereby increasing photosynthetic efficiency and yield. Under the conditions adopted in this experiment, a parabolic relationship was observed between the nitrogen application rate and grain yield. The regression analysis results showed that the best nitrogen application rate of indica hybrid rice is 168.16 kg ha−1 and the highest yield is 11,804.87 kg ha−1.


2018 ◽  
Vol 12 (4) ◽  
pp. 45-49
Author(s):  
Валерий Чибис ◽  
Valeriy Chibis ◽  
Светлана Чибис ◽  
Svetlana Chibis ◽  
Илья Кутышев ◽  
...  

In a long-term places, located on the experimental fields of Siberian Research Institute of Agriculture (Omsk), the schemes of field crop rotations were modernized by introducing oil crops (rapeseed, soybean) into rotation and replacing the repeated wheat crops with barley and oats. Accounting of grain crops productivity and accompanying observations were carried out in three field rotations of different lengths of rotation (four- and five-field) and on permanent sowing. The repetition of the experiments is fourfold. The system of agrotechnical measures recommended for the zone of the forest-steppe of Western Siberia was applied. The study of predecessors in the cultivation of crops for various purposes was carried out in field experiments using conventional methods. The humus content for rotation in the soil layer of 0-40 cm increased by 0.19% in the crop rotation “rapeseed - wheat spring wheat - barley - soybean - spring wheat”. The largest accumulation of humus (0.83%) was in the rotation “soybean - spring wheat - barley – oats”. During the years of research wheat productivity varied from 0.82 to 2.22 tons per hectare. Wheat was the first crop in all its predecessors to form grains, on average, by 0.3-0.5 tons per hectare, than the second crop. The yield of soybeans in the crop rotation was 1.23-1.78 tons per hectare. The productivity of rapeseed was low, its productivity over the years was 1.31 tons per hectare. Grain-fodder crops (barley, oats) averaged 0.4-0.6 tons per hectare, higher than the spring wheat productivity in the alternating rotation. The maximum yield of grain from a hectare of arable land was noted in the crop-steam rotation and amounted to 1.7 tons. An increase in the yield of feed-protein units was observed in crop rotations saturated with oil crops (rapeseed and soybean) and amounted to 3.4-4.0 tons per hectare. The economic calculation showed that the cultivation of field crops in the rotational crop rotation of “soybean - wheat - barley – oats” increased profitability by 44%, net income - by half, in comparison with the control variant. The obtained materials can be used to develop schemes of field crop rotations for the zone of the forest-steppe of Western Siberia.


2021 ◽  
Vol 32 ◽  
pp. 02007
Author(s):  
Izida Ilyinskaya ◽  
Emma Gaevaya

Field experiments were carried out in the Rostov region on the slope of ordinary chernozems in the system of contour-strip organization of the territory in 2011-2020. The aim of the research was the development of agrotechnical methods (design of crop rotation, the method of basic tillage and the background of fertilizers), which ensure high productivity of crop rotations on the eroded slope of ordinary chernozems and the preservation of fertility. The experiment included three factors: the design of the crop rotation, the method of the main tillage, the background of mineral fertilizers. It was found that, on average, for the period of research, the level of mineral nutrition has the greatest influence on the productivity of the crop rotation (83.9%), followed by the design of the crop rotation (14.9%). The influence of basic tillage is estimated at only 1.2%. It was found that the introduction of 20% of perennial grasses into the structure of crop rotation reduces soil washout by 19.5-27.7%, and an increase in the proportion of perennial grasses to 40% by 38.3-43.8%. The use of chisel tillage reduces washout by 15.6-24.2%, and with it the loss of humus. In the “C” crop rotation in all variants of the experiment, the humus content increased by 0.010.03%. It was revealed that the productivity of all the studied crop rotations changed under the influence of agrotechnical methods, reaching in the crop rotation “C” with 40% of perennial grasses and 60% of grain crops on average for the studied period the highest value of 3.53 t / ha of grain units, which is 9.3% higher than in the “B” crop rotation and 17.3% higher than in the “A” crop rotation.


Sign in / Sign up

Export Citation Format

Share Document