Mass Loss from Stars

1970 ◽  
Vol 39 ◽  
pp. 272-280
Author(s):  
S. R. Pottasch

In this summary we shall attempt to evaluate the mass loss from several kinds of high luminosity stars, especially planetary nebulae, OB supergiants and M giants and supergiants. The purpose is to give an observational basis for the discussion of the mechanism of mass loss and of the consequences of stellar mass loss for the interstellar medium and for stellar evolution. For reasons which will presently be discussed, we are now certain that mass loss is occurring in all the objects mentioned, and probably to a similar extent in all high luminosity stars as well. The precise values of the mass loss rate are uncertain at present; for some objects the uncertainty will be large (two orders of magnitude) and have important influence on the consequences of the mass loss. Therefore we shall discuss in some detail how the different loss rates quoted in the literature have been obtained and what assumptions have been made (see also the Report by Boyarchuk, p. 281). On the basis of this discussion we will indicate the most probable loss rates and their consequences, always remembering the possible influence of the uncertainties.

2015 ◽  
Vol 11 (A29B) ◽  
pp. 454-454 ◽  
Author(s):  
Cyril Georgy ◽  
Sylvia Ekström

AbstractThe red supergiant phase is an important phase of the evolution of massive star, as it mostly determines its final stages. One of the most important driver of the evolution during this phase is mass loss. However, the mass-loss rates prescription used for red supergiants in current stellar evolution models are still very inaccurate.Varying the mass-loss rate makes the star evolve for some time in yellow/blue regions of the HRD, modifying the number of RSGs in some luminosity ranges. Figure 1 shows how the luminosity distribution of RSGs is modified for various mass-loss prescriptions. This illustrates that it is theoretically possible to determine at least roughly what is the typical mass loss regime of RSGs in a stellar evolution perspective.


1981 ◽  
Vol 59 ◽  
pp. 125-130 ◽  
Author(s):  
A.G. Hearn

I assume that the purpose of this review of the theory of winds from early type stars is to summarize the way in which the mass loss rate of a star may be included in a calculation of stellar evolution. Let me summarize my conclusions. It is not possible. One can only use estimates of mass loss rates obtained from the observations. Even these give a large uncertainty. The observed mass loss rates for different stars of the same spectral type vary. Further the mass loss rates obtained by different methods for the same star differ. An extreme example of this is 9 Sgr. The mass loss rate derived from the radio observations is forty times greater than that derived from the U.V. and optical measurements (Abbott et al. 1980).


1977 ◽  
Vol 4 (2) ◽  
pp. 105-114
Author(s):  
R. and G. Cayrel

As a star burns its nuclear fuel, its radius R and its luminosity L are modified. Its mass may as well be affected if the mass loss rate has a time scale comparable to the nuclear time scale; this is likely to occur for stars of very high luminosity. Currently, the change in radius R and luminosity L of an evolving star is described in the socalled theoretical Herzsprung-Russel diagramme with in abscissa the logarithm of the effective temperature defined by:


2008 ◽  
Vol 4 (S252) ◽  
pp. 189-195 ◽  
Author(s):  
Lee Anne Willson

AbstractObservations tend to select mass loss rates near the critical rate, Ṁcrit = M/L. There are two reasons for this. In some situations, such as near the tip of the AGB, the mass loss rate is very sensitive to stellar parameters. In this case, stars with Ṁ ≪ Ṁcrit have dust-free, hard-to-measure mass loss rates while stars with Ṁ ≫ Ṁcrit do not survive very long and thus make up a small fraction of any sample. Selection effects dominate the fitting of empirical formulae; observations of mass loss rates tell us more about which stars are losing mass than about how a star loses mass. In other situations, such as for some of the stars along the RGB, a steady state situation occurs where the loss of mass leads to a decrease in mass loss rate while the evolutionary changes lead to an increase; the result is a steady state with Ṁ = Ṁcrit. To determine the envelope mass and composition at the end of a phase of intensive mass loss requires stellar evolution models capable of responding on a time scale ~ tKH and thus, a new generation of stellar modeling codes.


1998 ◽  
Vol 11 (1) ◽  
pp. 367-367
Author(s):  
S.D. Van Dyk ◽  
M.J. Montes ◽  
K.W. Weiler ◽  
R.A. Sramek ◽  
N. Panagia

The radio emission from supernovae provides a direct probe of a supernova’s circumstellar environment, which presumably was established by mass-loss episodes in the late stages of the progenitor’s presupernova evolution. The observed synchrotron emission is generated by the SN shock interacting with the relatively high-density circumstellar medium which has been fully ionized and heated by the initial UV/X-ray flash. The study of radio supernovae therefore provides many clues to and constraints on stellar evolution. We will present the recent results on several cases, including SN 1980K, whose recent abrupt decline provides us with a stringent constraint on the progenitor’s initial mass; SN 1993J, for which the profile of the wind matter supports the picture of the progenitor’s evolution in an interacting binary system; and SN 1979C, where a clear change in presupernova mass-loss rate occurred about 104 years before explosion. Other examples, such as SNe 19941 and 1996cb, will also be discussed.


2018 ◽  
Vol 14 (S346) ◽  
pp. 83-87
Author(s):  
Vikram V. Dwarkadas

AbstractMassive stars lose a considerable amount of mass during their lifetime. When the star explodes as a supernova (SN), the resulting shock wave expands in the medium created by the stellar mass-loss. Thermal X-ray emission from the SN depends on the square of the density of the ambient medium, which in turn depends on the mass-loss rate (and velocity) of the progenitor wind. The emission can therefore be used to probe the stellar mass-loss in the decades or centuries before the star’s death.We have aggregated together data available in the literature, or analysed by us, to compute the X-ray lightcurves of almost all young supernovae detectable in X-rays. We use this database to explore the mass-loss rates of massive stars that collapse to form supernovae. Mass-loss rates are lowest for the common Type IIP supernovae, but increase by several orders of magnitude for the highest luminosity X-ray SNe.


Galaxies ◽  
2018 ◽  
Vol 6 (3) ◽  
pp. 89
Author(s):  
Efrat Sabach

We study the effects of a reduced mass-loss rate on the evolution of low metallicity Jsolated stars, following our earlier classification for angular momentum (J) isolated stars. By using the stellar evolution code MESA we study the evolution with different mass-loss rate efficiencies for stars with low metallicities of Z = 0 . 001 and Z = 0 . 004 , and compare with the evolution with solar metallicity, Z = 0 . 02 . We further study the possibility for late asymptomatic giant branch (AGB)—planet interaction and its possible effects on the properties of the planetary nebula (PN). We find for all metallicities that only with a reduced mass-loss rate an interaction with a low mass companion might take place during the AGB phase of the star. The interaction will most likely shape an elliptical PN. The maximum post-AGB luminosities obtained, both for solar metallicity and low metallicities, reach high values corresponding to the enigmatic finding of the PN luminosity function.


2019 ◽  
Vol 622 ◽  
pp. A123 ◽  
Author(s):  
J. M. da Silva Santos ◽  
J. Ramos-Medina ◽  
C. Sánchez Contreras ◽  
P. García-Lario

Context. This is the second paper of a series making use of Herschel/PACS spectroscopy of evolved stars in the THROES catalogue to study the inner warm regions of their circumstellar envelopes (CSEs). Aims. We analyse the CO emission spectra, including a large number of high-J CO lines (from J = 14–13 to J = 45–44, ν = 0), as a proxy for the warm molecular gas in the CSEs of a sample of bright carbon-rich stars spanning different evolutionary stages from the asymptotic giant branch to the young planetary nebulae phase. Methods. We used the rotational diagram (RD) technique to derive rotational temperatures (Trot) and masses (MH2) of the envelope layers where the CO transitions observed with PACS arise. Additionally, we obtained a first order estimate of the mass-loss rates and assessed the impact of the opacity correction for a range of envelope characteristic radii. We used multi-epoch spectra for the well-studied C-rich envelope IRC+10216 to investigate the impact of CO flux variability on the values of Trot and MH2. Results. The sensitivity of PACS allowed for the study of higher rotational numbers than before indicating the presence of a significant amount of warmer gas (∼200 − 900 K) that is not traceable with lower J CO observations at submillimetre/millimetre wavelengths. The masses are in the range MH2 ∼ 10−2 − 10−5 M⊙, anticorrelated with temperature. For some strong CO emitters we infer a double temperature (warm T¯rot ∼ 400 K and hot T¯rot ∼ 820 K) component. From the analysis of IRC+10216, we corroborate that the effect of line variability is perceptible on the Trot of the hot component only, and certainly insignificant on MH2 and, hence, the mass-loss rate. The agreement between our mass-loss rates and the literature across the sample is good. Therefore, the parameters derived from the RD are robust even when strong line flux variability occurs, and the major source of uncertainty in the estimate of the mass-loss rate is the size of the CO-emitting volume.


2020 ◽  
Vol 492 (4) ◽  
pp. 5994-6006 ◽  
Author(s):  
Emma R Beasor ◽  
Ben Davies ◽  
Nathan Smith ◽  
Jacco Th van Loon ◽  
Robert D Gehrz ◽  
...  

ABSTRACT Evolutionary models have shown the substantial effect that strong mass-loss rates ($\dot{M}$s) can have on the fate of massive stars. Red supergiant (RSG) mass-loss is poorly understood theoretically, and so stellar models rely on purely empirical $\dot{M}$–luminosity relations to calculate evolution. Empirical prescriptions usually scale with luminosity and effective temperature, but $\dot{M}$ should also depend on the current mass and hence the surface gravity of the star, yielding more than one possible $\dot{M}$ for the same position on the Hertzsprung–Russell diagram. One can solve this degeneracy by measuring $\dot{M}$ for RSGs that reside in clusters, where age and initial mass (Minit) are known. In this paper we derive $\dot{M}$ values and luminosities for RSGs in two clusters, NGC 2004 and RSGC1. Using newly derived Minit measurements, we combine the results with those of clusters with a range of ages and derive an Minit-dependent $\dot{M}$ prescription. When comparing this new prescription to the treatment of mass-loss currently implemented in evolutionary models, we find models drastically overpredict the total mass-loss, by up to a factor of 20. Importantly, the most massive RSGs experience the largest downward revision in their mass-loss rates, drastically changing the impact of wind mass-loss on their evolution. Our results suggest that for most initial masses of RSG progenitors, quiescent mass-loss during the RSG phase is not effective at removing a significant fraction of the H-envelope prior to core-collapse, and we discuss the implications of this for stellar evolution and observations of SNe and SN progenitors.


2018 ◽  
Vol 14 (S343) ◽  
pp. 458-459
Author(s):  
Walter J. Macie ◽  
Roberto D. D. Costa

AbstractA sample of AGB/RGB stars with an excess of Li abundances is considered in order to estimate their mass loss rates. Our method is based on a correlation between the Li abundances and the stellar luminosity, using a modified version of the Reimers formula. We have adopted a calibration based on an empirical correlation between the mass loss rate and stellar parameters. We conclude that most Li-rich stars have lower mass loss rates compared with the majority of AGB/RGB stars, which show no evidences of Li enhancements, so that the Li enrichment process is probably not associated with an increased mass loss rate.


Sign in / Sign up

Export Citation Format

Share Document