scholarly journals Stellar Winds and Spindown — Observations

1983 ◽  
Vol 102 ◽  
pp. 417-438
Author(s):  
L. Hartmann

Stars with masses ≲ 1 M⊙ are observed to rotate more slowly as they age. The angular momentum loss is undoubtedly caused by the coupling of the stellar magnetic field to the escaping wind (Schatzman 1962). Chromospheric and coronal radiative losses depend upon rotation (Wilson 1966a, b; Kraft 1967; Skumanich 1972; Hall 1976; Bopp 1980; Walter and Bowyer 1981; Walter 1981; Vaiana et al. 1981). It is therefore likely that both magnetic fields (Skumanich 1972) and the mechanical energy fluxes required to drive mass loss also depend upon rotation as well. This complicated feedback between magnetic fields, winds, and rotation must control the variation of solar-type activity over much of the HR diagram, and may have very important effects on pre-main sequence evolution.

2007 ◽  
Vol 3 (S243) ◽  
pp. 241-248
Author(s):  
Jochen Eislöffel ◽  
Alexander Scholz

AbstractThe evolution of angular momentum is a key to our understanding of star formation and stellar evolution. The rotational evolution of solar-mass stars is mostly controlled by magnetic interaction with the circumstellar disc and angular momentum loss through stellar winds. Major differences in the internal structure of very low-mass stars and brown dwarfs – they are believed to be fully convective throughout their lives, and thus should not operate a solar-type dynamo – may lead to major differences in the rotation and activity of these objects. Here, we report on observational studies to understand the rotational evolution of the very low-mass stars and brown dwarfs.


1983 ◽  
Vol 102 ◽  
pp. 449-460 ◽  
Author(s):  
I.W. Roxburgh

The angular momentum loss produced by stellar winds is reviewed and a simple model of angular momentum loss with multipole fields is presented in which the field is potential when the flow speed is less than the Alfvén speed, and radial when greater than the Alfvén speed. The simpler the magnetic geometry, the larger is the angular momentum loss rate. This result is used to explain the rotational discontinuity across the Vaughan-Preston gap as being due to a sudden increase in angular momentum loss when the dynamo field switches from a quadropole to a dipole geometry.The evolution of the internal rotation of stars as a result of surface angular momentum loss is considered. In the absence of a magnetic field, differential rotation can drive instabilities which then transport angular momentum out from the interior down the angular velocity gradient. Other instabilities such as that caused by the build up of 3He can also transport angular momentum outwards. If angular momentum is transported by such weak turbulence, it also makes the star more homogeneous than standard evolutionary models and lowers the predicted value of the solar neutrino flux.The recent results on rotational splitting of solar oscillations are considered: these suggest that the inside of the sun is spinning faster than the surface and are compatible with models in which angular momentum is transported by mild turbulence. But data is scarce — and in such circumstances the speculations of the theorist must be viewed with caution!


1993 ◽  
Vol 155 ◽  
pp. 368-368
Author(s):  
M. Villata

A simple analytical model can explain the large angular momentum loss which a star suffers in its post-main-sequence evolution up to the white dwarf stage.


1993 ◽  
Vol 157 ◽  
pp. 171-175
Author(s):  
A.E. Dudorov

The theory of fossil magnetic fields shows that new born stars may have internal magnetic fields of more than 1 million gauss. Convection inside young solar type stars will tangle any strong fossil magnetic field. The small scale magnetic field rises to the surface and determines the young stars activity attenuating with their age. When a fossil field is diminished a turbulent dynamo may begin to work in the condition of nonlinear stabilization. The scaling relations for the turbulent αω dynamo show that the strength of the generated “fossil” magnetic field inside the main sequence stars is stabilized on the level one tenth — 10 millions gauss, depending on the mass of the stars.


2020 ◽  
Vol 496 (2) ◽  
pp. 1343-1354
Author(s):  
R Caballero Navarro ◽  
A García Hernández ◽  
A Ayala ◽  
J C Suárez

ABSTRACT The study of lithium (Li) surface abundance in the Sun and young stellar globular clusters which are seemingly anomalous in present-day scenarios, as well as the influence of rotation and magnetic braking (MB) on its depletion during pre-main sequence (PMS) and main sequence (MS). In this work, the effects of rotational mixing and of the rotational hydrostatic effects on Li abundances are studied by simulating several grids of PMS and MS rotating and non-rotating models. Those effects are combined with the additional impact of the MB (with magnetic field intensities ranging between 3.0 and 5.0 G). The data obtained from simulations are confronted by comparing different stellar parameters. The results show that the surface Li abundance for the Sun-like models at the end of the PMS and throughout the MS decreases when rotational effects are included, that is the Li depletion rate for rotating models is higher than for non-rotating ones. This effect is attenuated when the MB produced by a magnetic field is present. This physical phenomena impacts also the star effective temperature (Teff) and its location in the HR diagram. The impact of MB in Li depletion is sensitive to the magnetic field intensity: the higher it is, the lower the Li destruction. A direct link between the magnetic fields and the convective zone (CZ) size is observed: stronger magnetic fields produce shallower CZ’s. This result suggests that MB effect must be taken into consideration during PMS if we aim to reproduce Li abundances in young clusters.


2010 ◽  
Vol 6 (S273) ◽  
pp. 68-73
Author(s):  
Mark S. Giampapa

AbstractThe evolution of stellar activity involves a complex interplay between the interior dynamo mechanism, the emergent magnetic field configurations and their coupling with stellar winds, the subsequent angular momentum evolution, and fundamental stellar parameters. The discussion of the evolution of surface activity will emphasize the main sequence phase, from the ZAMS to stars of solar-age. We will focus particularly on the evolution of the fractional area coverages of spots on the surfaces of solar-type stars. We fit an empirical relation to the fractional mean spot area coverage as a function of age for ages greater than the Pleiades of the form log(MeanSpotCoverage) = 0.90(±0.26) − 1.03(±0.10)log(Age), where Age is in Myr. In addition, we summarize the relative evolution of radiative emissions in various short wavelength bands that are associated with stellar magnetic field-related activity. Possible effects on young planetary atmospheres also are appropriate to consider given that stellar surface activity is the origin of the high-energy component of the ambient radiation and particle fields in which planetary atmosphere evolution occurs.


1997 ◽  
Vol 161 ◽  
pp. 267-282 ◽  
Author(s):  
Thierry Montmerle

AbstractFor life to develop, planets are a necessary condition. Likewise, for planets to form, stars must be surrounded by circumstellar disks, at least some time during their pre-main sequence evolution. Much progress has been made recently in the study of young solar-like stars. In the optical domain, these stars are known as «T Tauri stars». A significant number show IR excess, and other phenomena indirectly suggesting the presence of circumstellar disks. The current wisdom is that there is an evolutionary sequence from protostars to T Tauri stars. This sequence is characterized by the initial presence of disks, with lifetimes ~ 1-10 Myr after the intial collapse of a dense envelope having given birth to a star. While they are present, about 30% of the disks have masses larger than the minimum solar nebula. Their disappearance may correspond to the growth of dust grains, followed by planetesimal and planet formation, but this is not yet demonstrated.


1970 ◽  
Vol 4 ◽  
pp. 73-81
Author(s):  
Isao Okamoto

AbstractThe braking of stellar rotation in the wholly convective phase in the pre-main sequence is numerically discussed. The structure of stars in that phase is expressed by a rotating polytrope with an index of 1.5 and the Schatzman-type mechanism is used as the means of loss of angular momentum. The magnetic energy is assumed to change with evolution as H02/8π(R/R0)s, where H0 and R0 are initial magnetic field and radius, and s is a free parameter. The changes of angular momentum, rotational velocity, etc. with contraction are calculated from the initial state, which is taken to be the state when the stars flared up to the Helmholtz-Kelvin contraction. It is shown that the exponent s must be in the range from – 1 to – 3 so that the stars with adequate strength of the initial magnetic field may lose almost all of their angular momenta in a suitable rate if they are initially in the state of rotational instability.Stellar rotation from the time of star formation to the main sequence stage is discussed. Also, the formation of the solar system and other planetary systems is discussed, with respect to the braking.


Sign in / Sign up

Export Citation Format

Share Document