scholarly journals X-Ray Observations of Active Galactic Nuclei

1983 ◽  
Vol 104 ◽  
pp. 347-347
Author(s):  
C. Megan Urry ◽  
Richard F. Mushotzky ◽  
Allyn F. Tennant ◽  
Elihu A. Boldt ◽  
Stephen S. Holt

HEAO 1 A2 and Einstein SSS spectral observations of Seyfert galaxies and BL Lac objects suggest that in both cases, the X-ray emission is due to relativistic particles. The five BL Lac objects have very soft spectra and at higher energies (above 10 keV) may have hard tails. Combining our X-ray data with radio, infrared, optical, and ultraviolet observations, we can fit the BL Lac spectra with the familiar synchrotron self-Compton model if we allow for relativistic beaming (Urry and Mushotzky 1982, Urry et al. 1982). We show that Doppler beaming of an underlying (Seyfert-like) source population flattens the observed luminosity function, and we emphasize that the relative numbers of BL Lacs and quasars in given spectral intervals are strong functions of selection effects, the degree of Doppler beaming, and the form of the intrinsic luminosity function.

1983 ◽  
Vol 6 ◽  
pp. 491-498 ◽  
Author(s):  
A.C. Fabian

Recent X-ray observations of active galactic nuclei and Seyfert galaxies in particular are briefly reviewed. The application of the efficiency limit to rapidly varying luminous sources such as NGC 6814 is discussed. It is argued that the variability and probable MeV spectral turnover imply that most of the electrons which radiate the observed flux are only mildly relativistic. A possible link between the steep soft X-ray spectra and featureless optical continua of BL Lac objects is considered.


1996 ◽  
Vol 175 ◽  
pp. 379-380
Author(s):  
C. M. Urry ◽  
Paolo Padovani

In a recent review paper we summarized the current status of unification of radio-loud AGN (Urry & Padovani 1995 PASP 107, 803), connecting high-luminosity (FR II) radio galaxies with quasars, and low-luminosity (FR I) radio galaxies with BL Lac objects. Unified schemes are motivated by the knowledge that AGN appearance depends strongly on orientation (Fig. 1): optical/UV light from the centers of many AGN is obscured by circumnuclear matter, and in radio-loud AGN, bipolar relativistic jets beam light along the jet axes. Understanding these radiation anisotropics allows us to unify apparently distinct classes of AGN that differ primarily because of orientation.Our review described the classification and general properties of AGN and summarized the evidence for anisotropic emission caused by circumnuclear obscuration and relativistic beaming. We outlined the evidence, both observed isotropic properties and statistical arguments, for connecting FR IIs with quasars and FR Is with BL Lacs. The population statistics (with beaming) are in accordance with available data and suggest γ ≃ 5 for low-luminosity AGN and γ ≃ 10 for high-luminosity AGN. The distinctions between X-ray-selected and radio-selected BL Lac objects, and between BL Lacs and flat-spectrum variable quasars, still not understood, provide clues to the underlying physics of blazars. Our review discussed several possible problems and complications, and concluded with a list of the ten questions we believe are the most pressing in this field.


Author(s):  
Zhiyuan Pei ◽  
Junhui Fan ◽  
Jianghe Yang ◽  
Denis Bastieri

Abstract Blazars are a subclass of active galactic nuclei with extreme observation properties, which is caused by the beaming effect, expressed by a Doppler factor ( $\delta$ ), in a relativistic jet. Doppler factor is an important parameter in the blazars paradigm to indicate all of the observation properties, and many methods were proposed to estimate its value. In this paper, we present a method following Mattox et al. to calculate the lower limit on $\gamma$ -ray Doppler factor ( $\delta_{\gamma}$ ) for 809 selected Fermi/LAT-detected $\gamma$ -ray blazars by adopting the available $\gamma$ -ray and X-ray data. Our sample included 342 flat-spectrum radio quasars (FSRQs) and 467 BL Lac objects (BL Lacs), out of which 507 sources are compiled with available radio core-dominance parameter (R) from our previous study. Our calculation shows that the average values of the lower limit on $\delta_{\gamma}$ for FSRQs and BL Lacs are $\left\langle\delta_{\gamma}|_{\textrm{FSRQ}}\right\rangle = 6.87 \pm 4.07$ and $\left\langle\delta_{\gamma}|_{\textrm{BL\ Lac}}\right\rangle=4.31 \pm 2.97$ , respectively. We compare and discuss our results with those from the literature. We found that the derived lower limit on $\delta_{\gamma}$ for some sources is higher than that from the radio estimation, which could be possibly explained by the jet bending within those blazars. Our results also suggest that the $\gamma$ -ray and radio regions perhaps share the same relativistic effects. The $\gamma$ -ray Doppler factor has been found to be correlated with both the $\gamma$ -ray luminosity and core-dominance parameter, implying that the jet is possibly continuous in the $\gamma$ -ray bands, and R is perhaps an indicator for a beaming effect.


1987 ◽  
Vol 124 ◽  
pp. 593-595
Author(s):  
Isabella M. Gioia ◽  
Tommaso Maccacaro ◽  
Anna Wolter

We present a progress report on a major extension of the Einstein Observatory Medium Sensitivity Survey (MSS). The basic properties of the extragalactic sources identified with Active Galactic Nuclei (AGN) and clusters of galaxies are discussed. Results from previous work are briefly summarized.


2020 ◽  
Vol 638 ◽  
pp. A128 ◽  
Author(s):  
E. J. Marchesini ◽  
A. Paggi ◽  
F. Massaro ◽  
N. Masetti ◽  
R. D’Abrusco ◽  
...  

Context. Nearly 50% of all sources detected by the Fermi Large Area Telescope are classified as blazars or blazar candidates, one of the most elusive classes of active galaxies. Additional blazars can also be hidden within the sample of unidentified or unassociated γ-ray sources (UGSs) that constitute about one-third of all gamma-ray sources detected to date. We recently confirmed that the large majority of Fermi blazars of the BL Lac subclass have an X-ray counterpart. Aims. Using the X-ray properties of a BL Lac training set and combining these with archival multifrequency information, we aim to search for UGSs that could have a BL Lac source within their γ-ray positional uncertainty regions. Methods. We reduced and analyzed the Swift X-ray observations of a selected sample of 327 UGSs. We then compared the X-ray fluxes and hardness ratios of all sources detected in the pointed fields with those of known Fermi BL Lacs. Results. We find at least one X-ray source, lying within the γ-ray positional uncertainty at 95% confidence level, for 223 UGSs and a total of 464 X-ray sources in all fields analyzed. The X-ray properties of a large fraction of them, eventually combined with radio, infrared, and optical information, exhibit BL Lac multi-frequency behavior, thus allowing us to select high-confidence BL Lac candidates; some of them were recently observed during our optical spectroscopic campaign which confirmed their nature. Conclusions. We find that out of 50 X-ray sources that were confirmed as BL Lacs through optical spectroscopy, 12 do not show canonical mid-infrared or radio BL Lac properties. This indicates that the selection of X-ray BL Lac candidates is a strong method to find new counterparts within Fermi UGSs. Finally, we pinpoint a sample of 32 Swift/XRT candidate counterparts to Fermi UGSs that are most likely BL Lac objects.


1986 ◽  
Vol 119 ◽  
pp. 51-52
Author(s):  
A. Hewitt ◽  
G. Burbidge

We have prepared a new catalogue of QSOs and BL Lac objects containing approximately 3400 entries. A complete update of the Hewitt-Burbidge (1980) catalogue has been made with approximately another 2000 objects with known redshifts added. The references to discovery, magnitudes, redshifts, color, spectra and polarimetry have been updated for the objects listed in 1980, and complete new references are included for the new objects. In addition to the basic optical information, the new catalogue also contains X-ray, radio and infrared information for all objects. Absorption redshifts are listed when they are available. A supplementary catalogue which is now in preparation will contain similar information for objects described variously as Seyfert galaxies, N systems and AGNs. In doubtful cases we have used the operational dividing line ƶ = 0.1. All objects with ƶ < 0.1 are put in the supplementary catalogue unless their discoverers have unambiguously defined them as QSOs. With approximately twice as many objects included it is interesting to note that: a)There are still very few genuine BL Lac objects, ∼100.b)The largest number of additions has come from identifications using the objective prism-grism techniques.


1986 ◽  
Vol 119 ◽  
pp. 491-492
Author(s):  
A. Cavaliere ◽  
E. Giallongo ◽  
F. Vagnetti

If the BL Lac Objects are active nuclei with a beamed component that is dominant when directed at us, their observed luminosity function must comprise a flat faint branch: N(L)dL ∝ L1+1/pdL with p=4.5 (Urry and Shafer 1984). If this is flatter than the LF NP(L) of the parent objects at equal observed L, then we expect the counts of BL Lacs to flatten out in turn at fluxes quite higher than the counts of the parents, even when both populations evolve strongly and uniformly with comparable timescales (Cavaliere, Giallongo and Vagnetti 1985).


1994 ◽  
Vol 159 ◽  
pp. 113-122
Author(s):  
Rick Edelson

CGRO and IUE observations suggest that the strong, aperiodic variability seen in the Exosat long-look observations of AGN extends over a much wider energy band. Some BL Lac objects (but no Seyfert 1 galaxies) have shown X-ray variations which were so rapid that they violate the assumptions of isotropy inherent in the Eddington limit. In the ultraviolet, Seyfert 1s as a class show an anti-correlation between the variability amplitude and luminosity, while BL Lacs show a positive correlation. Furthermore, Seyfert 1s show strong flux-correlated spectral variability, while BL Lacs show little or none. All of this suggests that the high-energy continua of BL Lacs are beamed towards us, while the ultraviolet continua of Seyfert 1s are emitted isotropically.The November 1991 multi-waveband monitoring of the BL Lac PKS 2155−304 showed strong correlated variability, with the soft X-rays leading the ultraviolet by a few hours, and no measurable lag between the ultraviolet and optical down to a limit of ≲ 1.5 hr. This indicates that the X-rays from this BL Lac are not produced by Compton upscattering, and that the ultraviolet does not come directly from a thermal source such as an accretion disk. This also strongly constrains the relativistic jet model, suggesting that all of the radiation is produced in a flattened region like a shock front.Low temporal resolution ultraviolet/optical monitoring of the Seyfert 1 NGC 5548 in 1989 yielded a strong correlation with no measurable lag to a limit of ≲4 days, casting some doubt on the standard model of thermal emission from an accretion disk in Seyfert 1s. Upcoming X-ray/ultraviolet/optical monitoring of the Seyfert 1 NGC 4151 in December 1993 will have much faster sampling, to permit a strong test of both this model and the competing reprocessing model.


1983 ◽  
Vol 104 ◽  
pp. 39-40
Author(s):  
L. Maraschi ◽  
D. Maccagni ◽  
E. G. Tanzi ◽  
M. Tarenghi ◽  
A. Treves

PKS 2155–304 was repeatedly observed in 1979 and 1980 with the International Ultraviolet Explorer. Variations up to a factor of 2 in one year and by 20% in a day are found. The maximum amplitude of variation in X-rays is similar but the timescales are much shorter (a factor of 2 in one day; Urry and Mushotzky, 1982). In all cases the 1200–3100 A continuum is well fitted by a power law with frequency spectral index αUV between −0.7±0.03 and −0.9±0.03. Optical and ultraviolet observations taken within one day show different spectral slopes (Fig. 1). Separate power law fits in the two bands yield αopt = −0.46±0.01 and αUV = −0.80±0.02. The observations by Urry and Mushotzky indicate that the energy distribution steepens further in the soft X-ray region.


1989 ◽  
Vol 134 ◽  
pp. 191-193 ◽  
Author(s):  
P. Barr ◽  
P. Giommi ◽  
A. Pollock ◽  
G. Tagliaferri ◽  
D. Maccagni ◽  
...  

A wide variety of X-ray spectral forms has been reported in BL Lac objects. Concave spectra, i.e. a steep soft X-ray spectrum with a flat high energy tail, have been reported in a few of the brightest BL Lacs (e.g Urry 1986). Conversely, convex spectra (steep hard X-rays, flat soft X-ray spectrum) have also been reported, sometimes in the same objects (Madejski 1985, Barr et al 1988, George et al 1988). The high energy tails have usually been invoked as a signature of synchrotron-self-Compton emission. Two conflicting interpretations of the convex spectra have been made. Urry et al (1986) suggest absorption by a partially ionised medium, probably intrinsic to the BL Lac object, following the identification of an Oxygen absorption trough in the Einstein OGS spectrum of PKS 2155-304 by Canizares and Kruper (1984). Conversely, Barr et al (1988) attribute the hard X-ray steepening to energy loss mechanisms operating on a synchrotron source.


Sign in / Sign up

Export Citation Format

Share Document