scholarly journals The Determination of Electron Abundances in Interstellar Clouds

1980 ◽  
Vol 87 ◽  
pp. 339-340
Author(s):  
Alwyn Wootten ◽  
Ronald Snell ◽  
A. E. Glassgold

A new method for estimating electron fractions in shielded molecular clouds is proposed on the basis of gas phase ion-molecule reactions which involves measuring the quantity . Applied to existing data, it yields upper limits to Xe in the range from 10−8 to 10−7 for a variety of clouds, warm as well as cool. An upper bound to the cosmic ray ionization rate is also obtained.

Author(s):  
Nick Indriolo

Owing to its simple chemistry, H is widely regarded as the most reliable tracer of the cosmic-ray ionization rate in diffuse interstellar clouds. At present, H observations have been made in over 50 sight lines that probe the diffuse interstellar medium (ISM) throughout the Galaxy. This small survey presents the opportunity to investigate the distribution of cosmic-ray ionization rates in the ISM, as well as any correlations between the ionization rate and line-of-sight properties. Some of the highest inferred ionization rates are about 25 times larger than the lowest upper limits, suggesting variations in the underlying low-energy cosmic-ray flux across the Galaxy. Most likely, such variations are caused predominantly by the distance between an observed cloud and the nearest site of particle acceleration.


2011 ◽  
Vol 2011 ◽  
pp. 1-10 ◽  
Author(s):  
Ararat G. Yeghikyan

The transformation of the energy dependence of the cosmic ray proton flux in the keV to GeV region is investigated theoretically when penetrating inside molecular clouds ( mag). The computations suggest that energy losses of the cosmic ray particles by interaction with the matter of the molecular cloud are principally caused by the inelastic (electronic) interaction potential; the transformed energy distribution of energetic protons is determined mainly by the column density of the absorbing medium. A cutoff of the cosmic ray spectrum inside clouds by their magnetic fields is also phenomenologically taken into account. This procedure allows a determination of environment-dependent ionization rates of molecular clouds. The theoretically predicted ionization rates are in good agreement with those derived from astronomical observations of absorption lines in the spectrum of the cloud connected with the Herbig Be star LkH 101.


1978 ◽  
Vol 56 (8) ◽  
pp. 1069-1074 ◽  
Author(s):  
Terrance Brian McMahon ◽  
Colleen Joan Northcott

The gas phase ion molecule reactions of a number of potential fluoride donors with carbon dioxide and carbonyl fluoride have been studied. By determination of preferential directions of fluoride transfer the fluoride affinities of carbon dioxide and carbonyl fluoride have been bracketed and found to be 33 ± 3 kcal/mol and 35 + 3 kcal/mol respectively. In addition, from gas phase acidity studies of acetyl fluoride and 2-fluoropropene the fluoride affinities of ketene and allene have been calculated to be 38 ± 2 kcal/mol and 15 ± 2 kcal/mol respectively. The order of fluoride affinities (Lewis acidities) of carbon dioxide, ketene, and allene have been examined and explained in terms of the electron affinities of the F—C(A)(B) species (A,B=O,CH2) and the C—F bond dissociation energies. These quantities have been estimated and the latter interpreted on the basis of the π bond energies of the three compounds.


2021 ◽  
Author(s):  
Judy Kuan‐Yu Liu ◽  
Edouard Niyonsaba ◽  
Kawthar Z. Alzarieni ◽  
Victoria M. Boulos ◽  
Ravikiran Yerabolu ◽  
...  

1994 ◽  
Vol 66 (11) ◽  
pp. 1902-1910 ◽  
Author(s):  
Jody A. Freeman ◽  
Jodie V. Johnson ◽  
Richard A. Yost ◽  
Douglas W. Kuehl

2000 ◽  
Vol 197 ◽  
pp. 41-50 ◽  
Author(s):  
Paola Caselli

Ions and electrons play a key role in the chemical and dynamical evolution of interstellar clouds. Gas phase ion–molecule reactions are major chemical routes to the formation of interstellar molecules. The ionization degree determines the coupling between the magnetic field and the molecular gas through ion–neutral collisions, and thus regulates the rate of star formation. In the theoretical determination of the degree of ionization we run into several sources of uncertainty, including the poorly known cosmic ray flux and metal depletion within the cores, the penetration of UV radiation deep into regions of high visual extinction due to cloud inhomogeneities, and the ionization rate increase in the proximity of young stellar objects which may be strong X–ray emitters. Observational estimates of electron (or ion) fractions x(e) (≡ n(e)/n(H2), where n(e) and n(H2) are the electron and molecular hydrogen number densities, respectively) in dense cloud cores are thus of considerable interest. In this paper, I will review recent improvements in the estimates of the ion fraction in dense cores and point out the difficulties in determining x(e).


1982 ◽  
Vol 60 (4) ◽  
pp. 542-544 ◽  
Author(s):  
J. W. Larson ◽  
R. L. Clair ◽  
T. B. McMahon

A scheme is presented whereby sequences of fast bimolecular gas phase ion molecule reactions in mixtures containing (CHF2)2O may be used to generate proton bound dimer species at low pressures in an ion cyclotron resonance spectrometer. Using competitive solvent switching reactions it is demonstrated that solvent exchange equilibria may be readily established and from the thermochemical data derived from such equilibria accurate relative single molecule solvation energetics obtained.


2020 ◽  
Author(s):  
Oisin Shiels ◽  
P. D. Kelly ◽  
Cameron C. Bright ◽  
Berwyck L. J. Poad ◽  
Stephen Blanksby ◽  
...  

<div> <div> <div> <p>A key step in gas-phase polycyclic aromatic hydrocarbon (PAH) formation involves the addition of acetylene (or other alkyne) to σ-type aromatic radicals, with successive additions yielding more complex PAHs. A similar process can happen for N- containing aromatics. In cold diffuse environments, such as the interstellar medium, rates of radical addition may be enhanced when the σ-type radical is charged. This paper investigates the gas-phase ion-molecule reactions of acetylene with nine aromatic distonic σ-type radical cations derived from pyridinium (Pyr), anilinium (Anl) and benzonitrilium (Bzn) ions. Three isomers are studied in each case (radical sites at the ortho, meta and para positions). Using a room temperature ion trap, second-order rate coefficients, product branching ratios and reaction efficiencies are reported. </p> </div> </div> </div>


Sign in / Sign up

Export Citation Format

Share Document