scholarly journals Cyclotron Line Emission from Accretion onto a Magnetized Neutron Star

1981 ◽  
Vol 93 ◽  
pp. 233-233
Author(s):  
E. E. Salpeter

For material accreting along the magnetic field axis of a neutron star, electrons are quantized into Landau orbits. Collisional excitation of the first excited Landau level, followed by radiative decay, leads to the emission of a cyclotron line. The expected line is broad, because the optical depth is large, and its shape is difficult to calculate. Redshifts due to the recoil of a scattering electron and blueshifts due to scattering from the infalling accretion column are being calculated by I. Wasserman, as well as the proton stopping length in the presence of a magnetic field.

1971 ◽  
Vol 46 ◽  
pp. 455-456
Author(s):  
V. Canuto

It is usually considered that the beaming of the radiation coming out of a pulsar has to be strictly connected with the mechanism producing the radiation itself. We want to show that even when the emitting mechanism gives rise to an isotropically distributed radiation, the presence of a strong magnetic field will automatically beam the radiation preferentially along the magnetic field line rather than in any other direction. We have computed the Compton scattering and from that the opacity KH (K0 is the opacity for zero field). In Figure 1 the ratio KH/K0 is given vs. θ, the angle between the propagation vector and the magnetic field axis. Hq is a critical magnetic field numerically equal to 4.41 × 1013 G; Ne is the electron density. For the ordinary wave the opacity is reduced at θ = 0, while it is unaffected at θ = π/2 where KH → K0. Even at θ = π/4 the ratio KH/K0 is still ≃ 10−2, and a good beaming is still present. The values of the parameters are proper for a neutron star surface. It is to be noticed that the ratio KH/K0 is of the order of (ω/ωH)2 or [(kT/mc2)/(H/Hq]2. One therefore can conclude that the presence of a magnetic field itself assures the beaming of radiation along the field lines.


2020 ◽  
Vol 634 ◽  
pp. A89
Author(s):  
V. Doroshenko ◽  
S. Tsygankov ◽  
J. Long ◽  
A. Santangelo ◽  
S. Molkov ◽  
...  

The hard X-ray transient source Swift J1845.7–0037 was discovered in 2012 by Swift/BAT. However, at that time, no dedicated observations of the source were performed. In October 2019, the source became active again, and X-ray pulsations with a period of ∼199 s were detected with Swift/XRT. This triggered follow-up observations with NuSTAR. Here, we report on the timing and spectral analysis of the source properties using NuSTAR and Swift/XRT. The main goal was to confirm pulsations and search for possible cyclotron lines in the broadband spectrum of the source to probe its magnetic field. Despite highly significant pulsations with period of 207.379(2) s being detected, no evidence for a cyclotron line was found in the spectrum of the source. We therefore discuss the strength of the magnetic field based on the source flux and the detection of the transition to the “cold-disc” accretion regime during the 2012 outburst. Our conclusion is that the source is most likely a highly magnetized neutron star with B ≳ 1013 G at a large distance of d ∼ 10 kpc. The latter is consistent with the nondetection of a cyclotron line in the NuSTAR energy band.


2018 ◽  
Vol 27 (10) ◽  
pp. 1850083 ◽  
Author(s):  
Ritam Mallick ◽  
Amit Singh

In this paper, we present the effect of a strong magnetic field in the burning of a neutron star (NS). We have used relativistic magneto-hydrostatic (MHS) conservation equations for studying the PT from nuclear matter (NM) to quark matter (QM). We found that the shock-induced phase transition (PT) is likely if the density of the star core is more than three times nuclear saturation ([Formula: see text]) density. The conversion process from NS to quark star (QS) is found to be an exothermic process beyond such densities. The burning process at the star center most likely starts as a deflagration process. However, there can be a small window at lower densities where the process can be a detonation one. At small enough infalling matter velocities the resultant magnetic field of the QS is lower than that of the NS. However, for a higher value of infalling matter velocities, the magnetic field of QM becomes larger. Therefore, depending on the initial density fluctuation and on whether the PT is a violent one or not the QS could be more magnetic or less magnetic. The PT also have a considerable effect on the tilt of the magnetic axis of the star. For smaller velocities and densities the magnetic angle are not affected much but for higher infalling velocities tilt of the magnetic axis changes suddenly. The magnetic field strength and the change in the tilt axis can have a significant effect on the observational aspect of the magnetars.


2018 ◽  
Vol 617 ◽  
pp. A86 ◽  
Author(s):  
D. Li ◽  
D. Yuan ◽  
Y. N. Su ◽  
Q. M. Zhang ◽  
W. Su ◽  
...  

Context. Quasi-periodic oscillations are usually detected as spatial displacements of coronal loops in imaging observations or as periodic shifts of line properties (i.e., Doppler velocity, line width and intensity) in spectroscopic observations. They are often applied for remote diagnostics of magnetic fields and plasma properties on the Sun. Aims. We combine the imaging and spectroscopic measurements of available space missions, and investigate the properties of non-damping oscillations at flaring loops. Methods. We used the Interface Region Imaging Spectrograph (IRIS) to measure the spectrum over a narrow slit. The double-component Gaussian fitting method was used to extract the line profile of Fe XXI 1354.08 Å at the “O I” spectral window. The quasi-periodicity of loop oscillations were identified in the Fourier and wavelet spectra. Results. A periodicity at about 40 s is detected in the line properties of Fe XXI 1354.08 Å, hard X-ray emissions in GOES 1−8 Å derivative, and Fermi 26−50 keV. The Doppler velocity and line width oscillate in phase, while a phase shift of about π/2 is detected between the Doppler velocity and peak intensity. The amplitudes of Doppler velocity and line width oscillation are about 2.2 km s−1 and 1.9 km s−1, respectively, while peak intensity oscillates with amplitude at about 3.6% of the background emission. Meanwhile, a quasi-period of about 155 s is identified in the Doppler velocity and peak intensity of the Fe XXI 1354.08 Å line emission, and AIA 131 Å intensity. Conclusions. The oscillations at about 40 s are not damped significantly during the observation; this might be linked to the global kink modes of flaring loops. The periodicity at about 155 s is most likely a signature of recurring downflows after chromospheric evaporation along flaring loops. The magnetic field strengths of the flaring loops are estimated to be about 120−170 G using the magnetohydrodynamic seismology diagnostics, which are consistent with the magnetic field modeling results using the flux rope insertion method.


Universe ◽  
2020 ◽  
Vol 6 (5) ◽  
pp. 63
Author(s):  
Hui Wang ◽  
Zhi-Fu Gao ◽  
Huan-Yu Jia ◽  
Na Wang ◽  
Xiang-Dong Li

Young pulsars are thought to be highly magnetized neutron stars (NSs). The crustal magnetic field of a NS usually decays at different timescales in the forms of Hall drift and Ohmic dissipation. The magnetization parameter ω B τ is defined as the ratio of the Ohmic timescale τ O h m to the Hall drift timescale τ H a l l . During the first several million years, the inner temperature of the newly born neutron star cools from T = 10 9 K to T = 1.0 × 10 8 K, and the crustal conductivity increases by three orders of magnitude. In this work, we adopt a unified equations of state for cold non-accreting neutron stars with the Hartree–Fock–Bogoliubov method, developed by Pearson et al. (2018), and choose two fiducial dipole magnetic fields of B = 1.0 × 10 13 G and B = 1.0 × 10 14 G, four different temperatures, T, and two different impurity concentration parameters, Q, and then calculate the conductivity of the inner crust of NSs and give a general expression of magnetization parameter for young pulsars: ω B τ ≃ ( 1 − 50 ) B 0 / ( 10 13 G) by using numerical simulations. It was found when B ≤ 10 15 G, due to the quantum effects, the conductivity increases slightly with the increase in the magnetic field, the enhanced magnetic field has a small effect on the matter in the low-density regions of the crust, and almost has no influence the matter in the high-density regions. Then, we apply the general expression of the magnetization parameter to the high braking-index pulsar PSR J1640-4631. By combining the observed arrival time parameters of PSR J1640-4631 with the magnetic induction equation, we estimated the initial rotation period P 0 , the initial dipole magnetic field B 0 , the Ohm dissipation timescale τ O h m and Hall drift timescale τ H a l l . We model the magnetic field evolution and the braking-index evolution of the pulsar and compare the results with its observations. It is expected that the results of this paper can be applied to more young pulsars.


2019 ◽  
Vol 622 ◽  
pp. A61 ◽  
Author(s):  
R. Staubert ◽  
J. Trümper ◽  
E. Kendziorra ◽  
D. Klochkov ◽  
K. Postnov ◽  
...  

Cyclotron lines, also called cyclotron resonant scattering features are spectral features, generally appearing in absorption, in the X-ray spectra of objects containing highly magnetized neutron stars, allowing the direct measurement of the magnetic field strength in these objects. Cyclotron features are thought to be due to resonant scattering of photons by electrons in the strong magnetic fields. The main content of this contribution focusses on electron cyclotron lines as found in accreting X-ray binary pulsars (XRBP) with magnetic fields on the order of several 1012Gauss. Also, possible proton cyclotron lines from single neutron stars with even stronger magnetic fields are briefly discussed. With regard to electron cyclotron lines, we present an updated list of XRBPs that show evidence of such absorption lines. The first such line was discovered in a 1976 balloon observation of the accreting binary pulsar Hercules X-1, it is considered to be the first direct measurement of the magnetic field of a neutron star. As of today (end 2018), we list 35 XRBPs showing evidence of one ore more electron cyclotron absorption line(s). A few have been measured only once and must be confirmed (several more objects are listed as candidates). In addition to the Tables of objects, we summarize the evidence of variability of the cyclotron line as a function of various parameters (especially pulse phase, luminosity and time), and add a discussion of the different observed phenomena and associated attempts of theoretical modeling. We also discuss our understanding of the underlying physics of accretion onto highly magnetized neutron stars. For proton cyclotron lines, we present tables with seven neutron stars and discuss their nature and the physics in these objects.


2020 ◽  
Vol 498 (2) ◽  
pp. 3000-3012 ◽  
Author(s):  
F Castillo ◽  
A Reisenegger ◽  
J A Valdivia

ABSTRACT In a previous paper, we reported simulations of the evolution of the magnetic field in neutron star (NS) cores through ambipolar diffusion, taking the neutrons as a motionless uniform background. However, in real NSs, neutrons are free to move, and a strong composition gradient leads to stable stratification (stability against convective motions) both of which might impact on the time-scales of evolution. Here, we address these issues by providing the first long-term two-fluid simulations of the evolution of an axially symmetric magnetic field in a neutron star core composed of neutrons, protons, and electrons with density and composition gradients. Again, we find that the magnetic field evolves towards barotropic ‘Grad–Shafranov equillibria’, in which the magnetic force is balanced by the degeneracy pressure gradient and gravitational force of the charged particles. However, the evolution is found to be faster than in the case of motionless neutrons, as the movement of charged particles (which are coupled to the magnetic field, but are also limited by the collisional drag forces exerted by neutrons) is less constrained, since neutrons are now allowed to move. The possible impact of non-axisymmetric instabilities on these equilibria, as well as beta decays, proton superconductivity, and neutron superfluidity, are left for future work.


Sign in / Sign up

Export Citation Format

Share Document