scholarly journals Hidden in Plain Sight: A double-lined White Dwarf Binary 26 pc away and a Distant Cousin

Author(s):  
Mukremin Kilic ◽  
A Bédard ◽  
P Bergeron

Abstract We present high-resolution spectroscopy of two nearby white dwarfs with inconsistent spectroscopic and parallax distances. The first one, PG 1632+177, is a 13th magnitude white dwarf only 25.6 pc away. Previous spectroscopic observations failed to detect any radial velocity changes in this star. Here, we show that PG 1632+177 is a 2.05 d period double-lined spectroscopic binary (SB2) containing a low-mass He-core white dwarf with a more-massive, likely CO-core white dwarf companion. After L 870-2, PG 1632+177 becomes the second closest SB2 white dwarf currently known. Our second target, WD 1534+503, is also an SB2 system with an orbital period of 0.71 d. For each system, we constrain the atmospheric parameters of both components through a composite model-atmosphere analysis. We also present a new set of NLTE synthetic spectra appropriate for modeling high-resolution observations of cool white dwarfs, and show that NLTE effects in the core of the Hα line increase with decreasing effective temperature. We discuss the orbital period and mass distribution of SB2 and eclipsing double white dwarfs with orbital constraints, and demonstrate that the observed population is consistent with the predicted period distribution from the binary population synthesis models. The latter predict more massive CO + CO white dwarf binaries at short (<1 d) periods, as well as binaries with several day orbital periods; such systems are still waiting to be discovered in large numbers.

2021 ◽  
pp. 25-30
Author(s):  
J. Petrovic

This paper presents detailed evolutionary models of low-mass binary systems (1.25 + 1 M?) with initial orbital periods of 10, 50 and 100 days and accretion efficiency of 10%, 20%, 50%, and a conservative assumption. All models are calculated with the MESA (Modules for Experiments in Stellar Astrophysics) evolutionary code. We show that such binary systems can evolve via a stable Case B mass transfer into long period helium white dwarf systems.


1979 ◽  
Vol 53 ◽  
pp. 179-183 ◽  
Author(s):  
M. S. Bessell ◽  
D. T. Wickramasinghe ◽  
P. L. Cottrell

White dwarfs fall in two main categories (1) the group with H-rich atmospheres (DA) the most numerous, and (2) the group with He-rich atmospheres (DB, DC, DF, DG, λ4670). Calculations of element separation (via gravitational settling) and convective mixing in white dwarf models have been made by Koester (1976) and Vauclair and Reisse (1977) in order to understand the existence and maintenance of these distinct groups and to predict at what stage during the cooling of the white dwarf some connection may occur between the two groups. Over the last few years, Wickramasinghe, Bessell and Cottrell (Wickramasinghe et al., 1977; Cottrell et al., 1977; Bessell and Wickramasinghe, 1979; Bessell, 1978 and Wickramasinghe and Bessell, 1979) have investigated the properties of cool (T < 6000K white dwarfs observationally and theoretically. We have attempted to establish at what temperature mixing does occur in DA white dwarfs, whether cool white dwarfs could be confused with G, K and M dwarfs, and if one can discriminate spectroscopically cool He and H-rich white dwarfs. In this paper we will discuss the spectra and colors of the coolest (Te < 5000K white dwarfs and compare them with model atmosphere calculations.


2002 ◽  
Vol 12 ◽  
pp. 676-679
Author(s):  
Ruth C. Peterson

AbstractRecent results are reviewed for two methods of luminosity calibration based on high-resolution spectroscopy. The first relies onTeff/loggdeterminations from model-atmosphere analyses based on high-resolution spectra. This method is physically well founded but operationally demanding, and requires advance knowledge of stellar mass. The second, W-B, stems from the empirical relationship between luminosity and the width of chromospheric emission lines first established by Wilson and Bappu. Its physical basis is only partially understood, however, and the calibration depends on stellar metallicity and on the choice of lines.BothTeff/loggand W-B easily distinguish cool dwarfs from cool giants. Generally reasonable agreement is found between distances derived from Hipparcos parallaxes and those inferred from the loggvalues derived for nearby dwarfs with relatively well-known Hipparcos parallaxes, σ(π)/π &lt; 0.2. Constraining Hipparcos parallaxes star-by-star is not possible at present. Improvements are suggested for both approaches.


1971 ◽  
Vol 42 ◽  
pp. 130-135 ◽  
Author(s):  
K. H. Böhm ◽  
J. Cassinelli

Outer convection zones of white dwarfs in the range 5800 K ≤ Teff ≤ 30000 K have been studied assuming that they have the same chemical composition as determined by Weidemann (1960) for van Maanen 2. Convection is important in all these stars. In white dwarfs Teff < 8000 K the adiabatic temperature gradient is strongly influenced by the pressure ionization of H, HeI and HeII which occurs within the convection zone. Partial degeneracy is also important.Convective velocities are very small for cool white dwarfs but they reach considerable values for hotter objects. For a white dwarf of Teff = 30000 K a velocity of 6.05 km/sec and an acoustic flux (generated by the turbulent convection) of 1.5 × 1011 erg cm−2 sec−1 is reached. The formation of white dwarf coronae is briefly discussed.


2017 ◽  
Vol 45 ◽  
pp. 1760023
Author(s):  
S. O. Kepler ◽  
Alejandra Daniela Romero ◽  
Ingrid Pelisoli ◽  
Gustavo Ourique

White dwarf stars are the final stage of most stars, born single or in multiple systems. We discuss the identification, magnetic fields, and mass distribution for white dwarfs detected from spectra obtained by the Sloan Digital Sky Survey up to Data Release 13 in 2016, which lead to the increase in the number of spectroscopically identified white dwarf stars from 5[Formula: see text]000 to 39[Formula: see text]000. This number includes only white dwarf stars with [Formula: see text], i.e., excluding the Extremely Low Mass white dwarfs, which are necessarily the byproduct of stellar interaction.


Geosciences ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 289 ◽  
Author(s):  
Serena Benatti

Exoplanet research has shown an incessant growth since the first claim of a hot giant planet around a solar-like star in the mid-1990s. Today, the new facilities are working to spot the first habitable rocky planets around low-mass stars as a forerunner for the detection of the long-awaited Sun-Earth analog system. All the achievements in this field would not have been possible without the constant development of the technology and of new methods to detect more and more challenging planets. After the consolidation of a top-level instrumentation for high-resolution spectroscopy in the visible wavelength range, a huge effort is now dedicated to reaching the same precision and accuracy in the near-infrared. Actually, observations in this range present several advantages in the search for exoplanets around M dwarfs, known to be the most favorable targets to detect possible habitable planets. They are also characterized by intense stellar activity, which hampers planet detection, but its impact on the radial velocity modulation is mitigated in the infrared. Simultaneous observations in the visible and near-infrared ranges appear to be an even more powerful technique since they provide combined and complementary information, also useful for many other exoplanetary science cases.


1992 ◽  
Vol 9 ◽  
pp. 643-645
Author(s):  
G. Fontaine ◽  
F. Wesemael

AbstractIt is generally believed that the immediate progenitors of most white dwarfs are nuclei of planetary nebulae, themselves the products of intermediate- and low-mass main sequence evolution. Stars that begin their lifes with masses less than about 7-8 M⊙ (i.e., the vast majority of them) are expected to become white dwarfs. Among those which have already had the time to become white dwarfs since the formation of the Galaxy, a majority have burnt hydrogen and helium in their interiors. Consequently, most of the mass of a typical white dwarf is contained in a core made of the products of helium burning, mostly carbon and oxygen. The exact proportions of C and 0 are unknown because of uncertainties in the nuclear rates of helium burning.


1988 ◽  
Vol 108 ◽  
pp. 226-231
Author(s):  
Mario Livio

Classical nova (CN) and dwarf nova (DN) systems have the same binary components (a low-mass main sequence star and a white dwarf) and the same orbital periods. An important question that therefore arises is: are these systems really different ? (and if so, what is the fundamental difference ?) or, are these the same systems, metamorphosing from one class to the other ?The first thing to note in this respect is that the white dwarfs in DN systems are believed to accrete continuously (both at quiescence and during eruptions). At the same time, both analytic (e.g. Fujimoto 1982) and numerical calculations show, that when sufficient mass accumulates on the white dwarf, a thermonuclear runaway (TNR) is obtained and a nova outburst ensues (see e.g. reviews by Gallagher and Starrfield 1978, Truran 1982). It is thus only natural, to ask the question, is the fact that we have not seen a DN undergo a CN outburst (in about 50 years of almost complete coverage) consistent with observations of DN systems ? In an attempt to answer this question, we have calculated the probability for a nova outburst not to occur (in 50 years) in 86 DN systems (for which at least some of the orbital parameters are known).


1979 ◽  
Vol 53 ◽  
pp. 125-129
Author(s):  
F. Wesemael ◽  
H.M. Van Horn

Model atmosphere analyses of white dwarf spectra have contributed significantly to our understanding of the properties of degenerate stars.: In particular, the pioneering investigations of Bues (1970), Strittmatter and Wickramasinghe (1971) and Shipman (1972) have provided the first reliable determinations of the effective temperature and surface gravity of these objects (see Shipman 1979 and Weidemann 1978 for recent results). We now know with certainty that the hydrogen-rich white dwarf sequence extends at least over the range Te ∽ 6000 – 60.000K. In contrast, the hottest identified helium-rich white dwarfs seem to reach Te ~ 25.000K only, a puzzling result since the progenitors of DB white dwarfs should presumably also be helium-rich.


1978 ◽  
Vol 80 ◽  
pp. 117-120
Author(s):  
Harry L. Shipman

The status of determinations of white dwarf radii by model atmosphere methods is reviewed in this paper. Details will appear elsewhere (Shipman 1978). In brief, the results are that (i) the mean radius of a sample of 95 hydrogen-rich stars with parallaxes is 0.0131 R⊙; (ii) the mean radius of a sample of 13 helium-rich stars is 0.011 R⊙, indistinguishably different from the radius of the hydrogen-rich stars; and (iii) that the most serious limitation on our knowledge of the mean radius of white dwarfs is the influence of selection effects. An estimate of the selection effects indicates that the true mean white dwarf radius is near 0.011 R⊙.


Sign in / Sign up

Export Citation Format

Share Document