scholarly journals Peculiarities of the Stellar Population of Bars in the LMC and Other Barred Galaxies

1999 ◽  
Vol 190 ◽  
pp. 349-350
Author(s):  
A. S. Gusev

The age distributions in the bar and disk of the Large Magellanic Cloud are studied using data for 262 clusters with known ages, of which 89 are located in the bar. The spatial distributions for clusters in different age groups are investigated. Epochs of active star formation are determined for the bar and disk of the LMC. The ages of the stellar populations in the bar differ from that for the galaxy as a whole: in the bar, there is a deficit of intermediate-age clusters (5 × 108–6 × 109 yr) and an excess of young clusters with ages 3 × 107–5 × 108 yr. This indicates that the star formation history in the bar differs from that in regions outside the bar at the same distances from the center of the galaxy. Data on the composition of the old stellar populations in the bar and the disk of the LMC and the spatial distribution of intermediate-age clusters in the galaxy suggest that the LMC bar formed (2–6) × 109 years ago. Deviation of colors of bars from the normal color sequence of galaxies on several two-color diagrams is found using multicolor surface photometry for eight barred galaxies. Using results of evolutionary synthesis modeling, I can model the abnormal colors of bars by an intermediate-age star (~ 109 yr) deficiency. I find that the deficiency of an intermediate-age stellar population is a general property of bars.

2018 ◽  
Vol 14 (S344) ◽  
pp. 77-80
Author(s):  
Seyed Azim Hashemi ◽  
Atefeh Javadi ◽  
Jacco Th. van Loon

AbstractDetermining the star formation history (SFH) is key to understand the formation and evolution of dwarf galaxies. Recovering the SFH in resolved galaxies is mostly based on deep colour–magnitude diagrams (CMDs), which trace the signatures of multiple evolutionary stages of their stellar populations. In distant and unresolved galaxies, the integrated light of the galaxy can be decomposed, albeit made difficult by an age–metallicity degeneracy. Another solution to determine the SFH of resolved galaxies is based on evolved stars; these luminous stars are the most accessible tracers of the underlying stellar populations and can trace the entire SFH. Here we present a novel method based on long period variable (LPV) evolved asymptotic giant branch (AGB) stars and red supergiants (RSGs). We applied this method to reconstruct the SFH for IC1613, an irregular dwarf galaxy at a distance of 750 kpc. Our results provide an independent confirmation that no major episode of star formation occurred in IC1613 over the past 5 Gyr.


2008 ◽  
Vol 4 (S256) ◽  
pp. 281-286
Author(s):  
Carme Gallart ◽  
Ingrid Meschin ◽  
Antonio Aparicio ◽  
Peter B. Stetson ◽  
Sebastián L. Hidalgo

AbstractBased on the quantitative analysis of a set of wide-field color—magnitude diagrams reaching the old main sequence-turnoffs, we present new LMC star-formation histories, and their variation with galactocentric distance. Some coherent features are found, together with systematic variations of the star-formation history among the three fields analyzed. We find two main episodes of star formation in all three fields, from 1 to 4 and 7 to 13 Gyr ago, with relatively low star formation around ≃ 4–7 Gyr ago. The youngest age in each field gradually increases with galactocentric radius; in the innermost field, LMC 0514–6503, an additional star formation event younger than 1 Gyr is detected, with star formation declining, however, in the last ≃ 200 Myr. The population is found to be older on average toward the outer part of the galaxy, although star formation in all fields seems to have started around 13 Gyr ago.


1999 ◽  
Vol 190 ◽  
pp. 343-344 ◽  
Author(s):  
T. A. Smecker-Hane ◽  
J. S. Gallagher ◽  
Andrew Cole ◽  
P. B. Stetson ◽  
E. Tolstoy

The Large Magellanic Cloud (LMC) is unique among galaxies in the Local Group in that it is the most massive non-spiral, is relatively gas-rich, and is actively forming stars. Determining its star-formation rate (SFR) as a function of time will be a cornerstone in our understanding of galaxy evolution. The best method of deriving a galaxy's past SFR is to compare the densities of stars in a color-magnitude diagram (CMD), a Hess diagram, with model Hess diagrams. The LMC has a complex stellar population with ages ranging from 0 to ~ 14 Gyr and metallicities from −2 ≲ [Fe/H] ≲ −0.4, and deriving its SFR and simultaneously constraining model input parameters (distance, age-metallicity relation, reddening, and stellar models) requires well-populated CMDs that span the magnitude range 15 ≤ V ≤ 24. Although existing CMDs of field stars in the LMC show tantalizing evidence for a significant burst of star formation that occurred ~ 3 Gyr ago (for examples, see Westerlund et al. 1995; Vallenari et al. 1996; Elson, et al. 1997; Gallagher et al. 1999, and references therein), estimates of the enhancement in the SFR vary from factors of 3 to 50. This uncertainty is caused by the relatively large photometric errors that plague crowded ground-based images, and the small number statistics that plague CMDs created from single Wide Field Planetary Camera 2 (WFPC2) images.


2007 ◽  
Vol 3 (S245) ◽  
pp. 81-82
Author(s):  
Habib G. Khosroshahi ◽  
Louisa A. Nolan

AbstractWe study the structure and stellar populations of the luminous elliptical galaxies dominating fossil groups and compare them with the brightest galaxies in ordinary groups. Despite being over-luminous, the fossil central galaxies do not show boxy stellar isophotes which are usually associated with luminous elliptical galaxies. Boxy isophotes, according to the numerical simulations, are produced in gas poor mergers. The isophotal shapes of the fossil central galaxies, therefore, suggest a gas rich merger for fossil central galaxies. Using a two-component spectral fitting, we show that the dominant stellar population of the fossil and non-fossil galaxies is old and the second population is either old or intermediate age. However, the second stellar component (recently-formed stars) in fossil central galaxies is significantly more metal poor than that in the brightest galaxies of non-fossil groups.


2007 ◽  
Vol 3 (S245) ◽  
pp. 293-296
Author(s):  
M. Mollá ◽  
S. Cantin ◽  
C. Robert ◽  
A. Pellerin

AbstractWe show observations obtained with the integral field spectrometer OASIS for the centers of a sample of barred galaxies. The high spatial resolution of the instrument allows to distinguish spatially some structures within these regions as defined by stellar populations of different ages and metallicities. From these data we deduce important clues about the star formation history. But we advise that, in order to obtain adequately the evolutionary sequence, a combination of chemical and synthesis models might be necessary.


1983 ◽  
Vol 6 ◽  
pp. 95-100
Author(s):  
Gösta Lyngå

Almost 25 years ago Walter Baade told the Vatican conference about the meaning of stellar populations:“We also understand now why the two stellar populations, either singly or combined, are such conspicuous features in most galaxies. They are age groups which represent two significant phases of the star formation in galaxies.”There appeared a straight-forward picture with an old, metal-poor halo containing stars in elongated galactic orbits and a younger disk population, where the stars have near solar abundances and near circular orbits. The central bulge of the galaxy was considered part of the older system.New observations have made the picture more complex and also more controversial, indicating that it still might not be fully understood. Stars in the bulge of our spiral galaxy have been shown to have rather high contents of heavy elements. The gas and perhaps also the stars of the disk show a metal content that is decreasing outwards in the disk. The abundances in globular clusters differ widely between individual clusters and even between individual stars of the same cluster. It has become clear that one must discuss separately the different heavy elements; that some abundances may be considered primordial and thus characteristic of the evolution of the stellar population, whereas other abundance differences may be caused by mixing into the stellar envelopes.


2019 ◽  
Vol 490 (1) ◽  
pp. 1186-1201 ◽  
Author(s):  
Andrew S Graus ◽  
James S Bullock ◽  
Alex Fitts ◽  
Michael C Cooper ◽  
Michael Boylan-Kolchin ◽  
...  

ABSTRACT We explore the radial variation of star formation histories (SFHs) in dwarf galaxies simulated with Feedback In Realistic Environments (FIRE) physics. The sample contains 26 field dwarf galaxies with Mstar = 105–109 M⊙. We find age gradients are common in our dwarfs, with older stars dominant at large radii. The strength of the gradient correlates with overall galaxy age such that earlier star formation produces a more pronounced gradient. The relation between formation time and strength of the gradient is driven by both mergers and star formation feedback. Mergers can both steepen and flatten the age gradient depending on the timing of the merger and SFHs of the merging galaxy. In galaxies without significant mergers, feedback pushes stars to the outskirts. The strength of the age gradient is determined by the subsequent evolution of the galaxy. Galaxies with weak age gradients constantly grow to z  = 0, meaning that young star formation occurs at a similar radius to which older stars are heated to. In contrast, galaxies with strong age gradients tend to maintain a constant half-mass radius over time. If real galaxies have age gradients as we predict, stellar population studies that rely on sampling a limited fraction of a galaxy can give a biased view of its global SFH. Central fields can be biased young by Gyrs while outer fields are biased old. Fields positioned near the 2D half-light radius will provide the least biased measure of a dwarf galaxy’s global SFH.


2009 ◽  
Vol 5 (S262) ◽  
pp. 172-175
Author(s):  
Lauren A. MacArthur ◽  
J. Jesús González ◽  
Stéphane Courteau ◽  
Michael McDonald

AbstractWe present a detailed study of the stellar populations (SPs) and kinematics of the bulge and inner disk regions of nearby spiral galaxies (Sa-Sd) based on deep long-slit Gemini/GMOS data. We find that the SPs of spiral galaxies are not well matched by single episodes of star formation; representative SPs must involve average SP values integrated over the star formation history (SFH) of the galaxy, such as those derived from the “full population synthesis” method used here. Our spiral bulges follow the same correlations of increasing light-weighted age and metallicity with central velocity dispersion as those of elliptical galaxies and early-type bulges found in other studies, but when SFHs more complex and realistic than a single burst are invoked, the trend with age is shallower and its scatter much reduced. In a mass-weighted context, all bulges are predominantly composed of old and metal-rich SPs. Bulge formation appears to be dominated by early processes that are common to all spheroids, whether they currently reside in disks or not. While monolithic collapse cannot be ruled out in some cases, merging must be invoked to explain the SP gradients in most bulges. Further bulge growth via secular processes, or “rejuvenated” star formation, generally contributes minimally to the stellar mass budget. We also demonstrate how the combination of our full population synthesis modeling of high-quality optical spectra of integrated SPs along with optical-NIR broad-band imaging can single out potential model weaknesses and help determine the reliability of the inferred SFHs.


1999 ◽  
Vol 192 ◽  
pp. 72-78
Author(s):  
Jason Harris ◽  
Dennis Zaritsky ◽  
Eva K. Grebel ◽  
Ian Thompson

We are developing an algorithm to determine the star formation history (SFH) of a mixed stellar population. We will apply the algorithm to hundreds of regions in our Magellanic Clouds Photometric Survey data and reconstruct the spatially resolved star formation history of the Large Magellanic Cloud (LMC) and the Small Magellanic Cloud (SMC). In this paper, we demonstrate the algorithm on a typical region in the LMC, focussing on the obstacles and challenges facing us in attempting to reliably extract the SFH from photometric data.


Sign in / Sign up

Export Citation Format

Share Document