scholarly journals Bolometric Light Curves of Symbiotic Novae

1992 ◽  
Vol 151 ◽  
pp. 435-438
Author(s):  
U. Mürset ◽  
H. Nussbaumer

We determine bolometric light curves and total energies radiated away during the outburst of symbiotic novae. Time integrated lower limits to the total energy of 0.9×1046 <E[erg] < 7×1046 are found. Thus, the output is comparable to, or larger than the total energy production of a classical nova outburst. From the mass-luminosity relation we find the underlying stellar masses to be 0.5 < M/M⊙ < 1.1.

Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 334 ◽  
Author(s):  
Chia-Nan Wang ◽  
Thanh-Tuan Dang ◽  
Hector Tibo ◽  
Duy-Hung Duong

Climate change and air pollution are among the key drivers of energy transition worldwide. The adoption of renewable resources can act as a peacemaker and give stability regarding the damaging effects of fossil fuels challenging public health as well as the tension made between countries in global prices of oil and gas. Understanding the potential and capabilities to produce renewable energy resources is a crucial pre-requisite for countries to utilize them and to scale up clean and stable sources of electricity generation. This paper presents a hybrid methodology that combines the data envelopment analysis (DEA) Window model, and fuzzy technique for order of preference by similarity to ideal solution (FTOPSIS) in order to evaluate the capabilities of 42 countries in terms of renewable energy production potential. Based on three inputs (population, total energy consumption, and total renewable energy capacity) and two outputs (gross domestic product and total energy production), DEA window analysis chose the list of potential countries, including Norway, United Kingdom, Kuwait, Australia, Netherlands, United Arab Emirates, United States, Japan, Colombia, and Italy. Following that, the FTOPSIS model pointed out the top three countries (United States, Japan, and Australia) that have the greatest capabilities in producing renewable energies based on five main criteria, which are available resources, energy security, technological infrastructure, economic stability, and social acceptance. This paper aims to offer an evaluation method for countries to understand their potential of renewable energy production in designing stimulus packages for a cleaner energy future, thereby accelerating sustainable development.


Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 691
Author(s):  
Aida Mérida García ◽  
Juan Antonio Rodríguez Díaz ◽  
Jorge García Morillo ◽  
Aonghus McNabola

The use of micro-hydropower (MHP) for energy recovery in water distribution networks is becoming increasingly widespread. The incorporation of this technology, which offers low-cost solutions, allows for the reduction of greenhouse gas emissions linked to energy consumption. In this work, the MHP energy recovery potential in Spain from all available wastewater discharges, both municipal and private industrial, was assessed, based on discharge licenses. From a total of 16,778 licenses, less than 1% of the sites presented an MHP potential higher than 2 kW, with a total power potential between 3.31 and 3.54 MW. This total was distributed between industry, fish farms and municipal wastewater treatment plants following the proportion 51–54%, 14–13% and 35–33%, respectively. The total energy production estimated reached 29 GWh∙year−1, from which 80% corresponded to sites with power potential over 15 kW. Energy-related industries, not included in previous investigations, amounted to 45% of the total energy potential for Spain, a finding which could greatly influence MHP potential estimates across the world. The estimated energy production represented a potential CO2 emission savings of around 11 thousand tonnes, with a corresponding reduction between M€ 2.11 and M€ 4.24 in the total energy consumption in the country.


1987 ◽  
Vol 131 (1-2) ◽  
pp. 379-393 ◽  
Author(s):  
S. Starrfield ◽  
W. M. Sparks
Keyword(s):  

1984 ◽  
Vol 56 (2) ◽  
pp. 520-525 ◽  
Author(s):  
G. A. Brooks ◽  
C. M. Donovan ◽  
T. P. White

o assess the effects of gradient and running speed on efficiency of exercise, and to evaluate contributions of oxidative and anaerobic energy production (Ean) during locomotion, two sets of experiments were performed. The caloric expenditures of rats were determined from O2 consumption (VO2) while they ran at three speeds (13.4, 26.8, and 43.1 m/min) on five grades (1, 5, 10, 15, and 20%). In addition, lactate turnover (LaT) and oxidation (Laox) were determined on rats at rest or during running at 13.4 and 26.8 m/min on 1% grade, respectively. Lactate production not represented in the VO2 (i.e., Ean) was calculated from the LaT not accounted for by oxidation [(LaT an) = LaT-Laox)]. The Ean was calculated as: Ean = [LaT an(mumol/min)] [1.38 ATP/La] [11 mcal/mumol ATP]. Gross efficiency of exercise (the caloric equivalent of external work/caloric equivalent of VO2 X 100) ranged from 1.7 to 4.5%. Apparent efficiency (the inverse of the regression of caloric equivalent of VO2 on the caloric equivalent of work X 100) ranged from 20.5 to 26.4% and reflected the metabolic response of rats to applied external work. The contribution of Ean to total energy turnover ranged from 1.6% at rest to 0.8% during running at 13.4 m/min on a 1% grade. Despite active LaT during steady-state exercise, Ean contributes insignificantly to total energy transduction, because over 70% of the lactate produced is removed through oxidation. VO2 adequately represents metabolism under these conditions.


Author(s):  
Javier Jiménez ◽  
Robert D Moser

The study of turbulence near walls has experienced a renaissance in the last decade, largely owing to the availability of high-quality numerical simulations. The viscous and buffer layers over smooth walls are essentially independent of the outer flow, and there is a family of numerically exact nonlinear structures that account for about half of the energy production and dissipation. The rest can be modelled by their unsteady bursting. Many characteristics of the wall layer, such as the dimensions of the dominant structures, are well predicted by those models, which were essentially completed in the 1990s after the increase in computer power made the kinematic simulations of the late 1980s cheap enough to undertake dynamic experiments. Today, we are at the early stages of simulating the logarithmic (or overlap) layer, and a number of details regarding its global properties are becoming clear. For instance, a finite Reynolds number correction to the logarithmic law has been validated in turbulent channels. This has allowed upper and lower limits of the overlap region to be clarified, with both upper and lower bounds occurring at much larger distances from the wall than commonly assumed. A kinematic picture of the various cascades present in this part of the flow is also beginning to emerge. Dynamical understanding can be expected in the next decade.


2018 ◽  
Vol 609 ◽  
pp. A66 ◽  
Author(s):  
R. E. G. Machado ◽  
P. B. Tissera ◽  
G. B. Lima Neto ◽  
L. Sodré

Context. Galaxies are surrounded by extended gaseous halos that store significant fractions of chemical elements. These are syntethized by the stellar populations and later ejected into the circumgalactic medium (CGM) by different mechanism, of which supernova feedback is considered one of the most relevant. Aims. We aim to explore the properties of this metal reservoir surrounding star-forming galaxies in a cosmological context aiming to investigate the chemical loop between galaxies and their CGM, and the ability of the subgrid models to reproduce observational results. Methods. Using cosmological hydrodynamical simulations, we have analysed the gas-phase chemical contents of galaxies with stellar masses in the range 109−1011 M⊙. We estimated the fractions of metals stored in the different CGM phases, and the predicted O vi and Si iii column densities within the virial radius. Results. We find roughly 107 M⊙ of oxygen in the CGM of simulated galaxies having M⋆ ~ 1010 M⊙, in fair agreement with the lower limits imposed by observations. The Moxy is found to correlate with M⋆, at odds with current observational trends but in agreement with other numerical results. The estimated profiles of O vi column density reveal a substantial shortage of that ion, whereas Si iii, which probes the cool phase, is overpredicted. Nevertheless, the radial dependences of both ions follow the respective observed profiles. The analysis of the relative contributions of both ions from the hot, warm and cool phases suggests that the warm gas (105 K < T < 106 K) should be more abundant in order to bridge the mismatch with the observations, or alternatively, that more metals should be stored in this gas-phase. These discrepancies provide important information to improve the subgrid physics models. Our findings show clearly the importance of tracking more than one chemical element and the difficulty of simultaneously satisfying the observables that trace the circumgalactic gas at different physical conditions. Additionally, we find that the X-ray coronae around the simulated galaxies have luminosities and temperatures in decent agreement with the available observational estimates.


1988 ◽  
Vol 108 ◽  
pp. 226-231
Author(s):  
Mario Livio

Classical nova (CN) and dwarf nova (DN) systems have the same binary components (a low-mass main sequence star and a white dwarf) and the same orbital periods. An important question that therefore arises is: are these systems really different ? (and if so, what is the fundamental difference ?) or, are these the same systems, metamorphosing from one class to the other ?The first thing to note in this respect is that the white dwarfs in DN systems are believed to accrete continuously (both at quiescence and during eruptions). At the same time, both analytic (e.g. Fujimoto 1982) and numerical calculations show, that when sufficient mass accumulates on the white dwarf, a thermonuclear runaway (TNR) is obtained and a nova outburst ensues (see e.g. reviews by Gallagher and Starrfield 1978, Truran 1982). It is thus only natural, to ask the question, is the fact that we have not seen a DN undergo a CN outburst (in about 50 years of almost complete coverage) consistent with observations of DN systems ? In an attempt to answer this question, we have calculated the probability for a nova outburst not to occur (in 50 years) in 86 DN systems (for which at least some of the orbital parameters are known).


2012 ◽  
Vol 21 (1-2) ◽  
Author(s):  
I. Hachisu ◽  
M. Kato

AbstractWe have analyzed the optical light curve of the symbiotic star V407 Cyg that underwent a classical nova outburst in 2010 March. Being guided by a supersoft X-ray phase observed during days 20-40 after the nova outburst, we are able to reproduce the light curve during a very early phase of the nova outburst. Our model consists of an outbursting white dwarf and an extended equatorial disk. An extremely massive white dwarf of 1.35-1.37 M


Sign in / Sign up

Export Citation Format

Share Document