scholarly journals Nuclear molecular gas in the Virgo Cluster S0 galaxy NGC 4710

1993 ◽  
Vol 153 ◽  
pp. 439-440
Author(s):  
J.M. Wrobel ◽  
J.D.P. Kenney

The CO(J=1→0) emission from NGC 4710, a star–forming S0 galaxy in the Virgo Cluster, was synthesized with spatial and velocity resolutions of 7″ and 26 km s—1, respectively. The CO shows a compact morphology and co–rotates with the galaxy's stars and nuclear optical emission line gas. Analysis of the CO distribution and kinematics indicates that the nuclear molecular gas is probably gravitationally unstable, and this may explain why the galaxy is presently forming stars. Four possible origins for the nuclear molecular gas are considered. An origin via bulge star ejecta being deposited into a residual interstellar medium is favored.

2021 ◽  
Vol 504 (1) ◽  
pp. 723-730
Author(s):  
Shengqi Yang ◽  
Adam Lidz ◽  
Gergö Popping

ABSTRACT The [O iii] 88 $\mu$m fine-structure emission line has been detected into the Epoch of Reionization (EoR) from star-forming galaxies at redshifts 6 < z ≲ 9 with ALMA. These measurements provide valuable information regarding the properties of the interstellar medium (ISM) in the highest redshift galaxies discovered thus far. The [O iii] 88 $\mu$m line observations leave, however, a degeneracy between the gas density and metallicity in these systems. Here, we quantify the prospects for breaking this degeneracy using future ALMA observations of the [O iii] 52 $\mu$m line. Among the current set of 10 [O iii] 88 $\mu$m emitters at 6 < z ≲ 9, we forecast 52 $\mu$m detections (at 6σ) in SXDF-NB1006-2, B14-6566, J0217-0208, and J1211-0118 within on-source observing times of 2–10 h, provided their gas densities are larger than about nH ≳ 102–103 cm−3. Other targets generally require much longer integration times for a 6σ detection. Either successful detections of the 52 $\mu$m line or reliable upper limits will lead to significantly tighter constraints on ISM parameters. The forecasted improvements are as large as ∼3 dex in gas density and ∼1 dex in metallicity for some regions of parameter space. We suggest SXDF-NB1006-2 as a promising first target for 52 $\mu$m line measurements. We discuss how such measurements will help in understanding the mass–metallicity relationship during the EoR.


2019 ◽  
Vol 488 (3) ◽  
pp. 3904-3928 ◽  
Author(s):  
Ryan Leaman ◽  
Francesca Fragkoudi ◽  
Miguel Querejeta ◽  
Gigi Y C Leung ◽  
Dimitri A Gadotti ◽  
...  

ABSTRACT Stellar feedback plays a significant role in modulating star formation, redistributing metals, and shaping the baryonic and dark structure of galaxies – however, the efficiency of its energy deposition to the interstellar medium is challenging to constrain observationally. Here we leverage HST and ALMA imaging of a molecular gas and dust shell ($M_{\mathrm{ H}_2} \sim 2\times 10^{5}\, {\rm M}_{\odot }$) in an outflow from the nuclear star-forming ring of the galaxy NGC 3351, to serve as a boundary condition for a dynamical and energetic analysis of the outflowing ionized gas seen in our MUSE TIMER survey. We use starburst99 models and prescriptions for feedback from simulations to demonstrate that the observed star formation energetics can reproduce the ionized and molecular gas dynamics – provided a dominant component of the momentum injection comes from direct photon pressure from young stars, on top of supernovae, photoionization heating, and stellar winds. The mechanical energy budget from these sources is comparable to low luminosity active galactic neuclei, suggesting that stellar feedback can be a relevant driver of bulk gas motions in galaxy centres – although here ≲10−3 of the ionized gas mass is escaping the galaxy. We test several scenarios for the survival/formation of the cold gas in the outflow, including in situ condensation and cooling. Interestingly, the geometry of the molecular gas shell, observed magnetic field strengths and emission line diagnostics are consistent with a scenario where magnetic field lines aided survival of the dusty ISM as it was initially launched (with mass-loading factor ≲1) from the ring by stellar feedback. This system’s unique feedback-driven morphology can hopefully serve as a useful litmus test for feedback prescriptions in magnetohydrodynamical galaxy simulations.


1996 ◽  
Vol 171 ◽  
pp. 380-380 ◽  
Author(s):  
J. Gallego ◽  
J. Zamorano ◽  
M. Rego ◽  
A.G. Vitores ◽  
O. Alonso

The Universidad Complutense de Madrid survey is a long-term project with the aim of finding and analyzing star forming galaxies using the Hα line as the tracer for star formation processes. In order to obtain a representative and complete sample of the population detected, spectroscopic observations were carried out for the full sample of Hα emission-line galaxy (ELG) candidates of the UCM lists 1 and 2. The ELGs types most commonly found (47%) are intermediate to low-luminosity objects with a very intense star-formation region which dominates the optical energy output of the galaxy. This kind of ELGs is similar to the galaxy population detected in the blue objective-prism surveys. And what is more important, a second population (43%) of star-forming galaxies with low ionization or high extinction properties has been found. This ELGs group is detected neither in the blue (University of Michigan survey, Case survey) nor in other surveys (Kiso, IRAS, Markarian) using other selection techniques.


2020 ◽  
Vol 492 (2) ◽  
pp. 2973-2995 ◽  
Author(s):  
Robin G Tress ◽  
Rowan J Smith ◽  
Mattia C Sormani ◽  
Simon C O Glover ◽  
Ralf S Klessen ◽  
...  

ABSTRACT We present here the first of a series of papers aimed at better understanding the evolution and properties of giant molecular clouds (GMCs) in a galactic context. We perform high-resolution, three-dimensional arepo simulations of an interacting galaxy inspired by the well-observed M51 galaxy. Our fiducial simulations include a non-equilibrium, time-dependent, chemical network that follows the evolution of atomic and molecular hydrogen as well as carbon and oxygen self-consistently. Our calculations also treat gas self-gravity and subsequent star formation (described by sink particles), and coupled supernova feedback. In the densest parts of the simulated interstellar medium (ISM), we reach sub-parsec resolution, granting us the ability to resolve individual GMCs and their formation and destruction self-consistently throughout the galaxy. In this initial work, we focus on the general properties of the ISM with a particular focus on the cold star-forming gas. We discuss the role of the interaction with the companion galaxy in generating cold molecular gas and controlling stellar birth. We find that while the interaction drives large-scale gas flows and induces spiral arms in the galaxy, it is of secondary importance in determining gas fractions in the different ISM phases and the overall star formation rate. The behaviour of the gas on small GMC scales instead is mostly controlled by the self-regulating property of the ISM driven by coupled feedback.


2006 ◽  
Vol 652 (1) ◽  
pp. 401-425 ◽  
Author(s):  
G. J. Madsen ◽  
R. J. Reynolds ◽  
L. M. Haffner

Author(s):  
R K Cochrane ◽  
P N Best ◽  
I Smail ◽  
E Ibar ◽  
C Cheng ◽  
...  

Abstract We present ∼0.15″ spatial resolution imaging of SHiZELS-14, a massive ($M_{*}\sim 10^{11}\, \rm {M_{\odot }}$), dusty, star-forming galaxy at z = 2.24. Our rest-frame $\sim 1\, \rm {kpc}$-scale, matched-resolution data comprise four different widely used tracers of star formation: the $\rm {H}\alpha$ emission line (from SINFONI/VLT), rest-frame UV continuum (from HST F606W imaging), the rest-frame far-infrared (from ALMA), and the radio continuum (from JVLA). Although originally identified by its modest $\rm {H}\alpha$ emission line flux, SHiZELS-14 appears to be a vigorously star-forming ($\rm {SFR}\sim 1000\, \rm {M_{\odot }\, yr^{-1}}$) example of a submillimeter galaxy, probably undergoing a merger. SHiZELS-14 displays a compact, dusty central starburst, as well as extended emission in $\rm {H}\alpha$ and the rest-frame optical and FIR. The UV emission is spatially offset from the peak of the dust continuum emission, and appears to trace holes in the dust distribution. We find that the dust attenuation varies across the spatial extent of the galaxy, reaching a peak of at least AHα ∼ 5 in the most dusty regions, although the extinction in the central starburst is likely to be much higher. Global star-formation rates inferred using standard calibrations for the different tracers vary from $\sim 10\!-\!1000\, \rm {M_{\odot }\, yr^{-1}}$, and are particularly discrepant in the galaxy’s dusty centre. This galaxy highlights the biased view of the evolution of star-forming galaxies provided by shorter wavelength data.


2013 ◽  
Vol 9 (S303) ◽  
pp. 54-58
Author(s):  
Deokkeun An ◽  
Solange V. Ramírez ◽  
Kris Sellgren

AbstractWe present 10 μm – 35μm Spitzer spectra of the interstellar medium in the central molecular zone (CMZ), the central 210 pc × 60 pc of the Galactic center (GC). We present maps of the CMZ in ionic and H2 emission, covering a more extensive area than earlier spectroscopic surveys in this region. We compare diagnostic line ratios measured in the Spitzer Infrared Nearby Galaxies Survey to our data. Previous work shows that forbidden line ratios can distinguish star-forming galaxies from low-ionization nuclear emission-line regions (LINERs) and active galactic nuclei (AGNs). Our GC line ratios agree with star-forming galaxies and not with LINERs or AGNs.


2018 ◽  
Vol 613 ◽  
pp. A34 ◽  
Author(s):  
D. Paraficz ◽  
M. Rybak ◽  
J. P. McKean ◽  
S. Vegetti ◽  
D. Sluse ◽  
...  

We present ALMA 2-mm continuum and CO (2-1) spectral line imaging of the gravitationally lensed z = 0.654 star-forming/quasar composite RX J1131-1231 at 240–400 mas angular resolution. The continuum emission is found to be compact and coincident with the optical emission, whereas the molecular gas forms a complete Einstein ring, which shows strong differential magnification. The de-lensed source structure is determined on 400-parsec-scales resolution using a Bayesian pixelated visibility-fitting lens modelling technique. The reconstructed molecular gas velocity-field is consistent with a large rotating disk with a major-axis FWHM ~9.4 kpc at an inclination angle of i = 54° and with a maximum rotational velocity of 280 km s−1. From dynamical model fitting we find an enclosed mass within 5 kpc of M(r < 5 kpc) = (1.46 ± 0.31) × 1011 M⊙. The molecular gas distribution is highly structured, with clumps that are co-incident with higher gas velocity dispersion regions (40–50 km s−1) and with the intensity peaks in the optical emission, which are associated with sites of on-going turbulent star-formation. The peak in the CO (2-1) distribution is not co-incident with the AGN, where there is a paucity of molecular gas emission, possibly due to radiative feedback from the central engine. The intrinsic molecular gas luminosity is L′CO = 1.2 ± 0.3 × 1010 K km s−1 pc2 and the inferred gas mass is MH2 = 8.3 ± 3.0 × 1010 M⊙, which given the dynamical mass of the system is consistent with a CO–H2 conversion factor of α = 5.5 ± 2.0 M⊙ (K km s−1 pc2)−1. This suggests that the star-formation efficiency is dependent on the host galaxy morphology as opposed to the nature of the AGN. The far-infrared continuum spectral energy distribution shows evidence for heated dust, equivalent to an obscured star-formation rate of SFR = 69−25+41 × (7.3/μIR) M⊙ yr−1, which demonstrates the composite star-forming and AGN nature of this system.


2020 ◽  
Vol 500 (3) ◽  
pp. 3064-3082 ◽  
Author(s):  
F Schuller ◽  
J S Urquhart ◽  
T Csengeri ◽  
D Colombo ◽  
A Duarte-Cabral ◽  
...  

ABSTRACT The SEDIGISM (Structure, Excitation and Dynamics of the Inner Galactic Interstellar Medium) survey used the APEX telescope to map 84 deg2 of the Galactic plane between ℓ = −60° and +31° in several molecular transitions, including 13CO (2 – 1) and C18O (2 – 1), thus probing the moderately dense (∼103 cm−3) component of the interstellar medium. With an angular resolution of 30 arcsec and a typical 1σ sensitivity of 0.8–1.0 K at 0.25 km s−1 velocity resolution, it gives access to a wide range of structures, from individual star-forming clumps to giant molecular clouds and complexes. The coverage includes a good fraction of the first and fourth Galactic quadrants, allowing us to constrain the large-scale distribution of cold molecular gas in the inner Galaxy. In this paper, we provide an updated overview of the full survey and the data reduction procedures used. We also assess the quality of these data and describe the data products that are being made publicly available as part of this First Data Release (DR1). We present integrated maps and position–velocity maps of the molecular gas and use these to investigate the correlation between the molecular gas and the large-scale structural features of the Milky Way such as the spiral arms, Galactic bar and Galactic Centre. We find that approximately 60 per cent of the molecular gas is associated with the spiral arms and these appear as strong intensity peaks in the derived Galactocentric distribution. We also find strong peaks in intensity at specific longitudes that correspond to the Galactic Centre and well-known star-forming complexes, revealing that the 13CO emission is concentrated in a small number of complexes rather than evenly distributed along spiral arms.


Author(s):  
Michael W Topping ◽  
Alice E Shapley ◽  
Naveen A Reddy ◽  
Ryan L Sanders ◽  
Alison L Coil ◽  
...  

Abstract We present a joint analysis of rest-UV and rest-optical spectra obtained using Keck/LRIS and Keck/MOSFIRE for a sample of 62 star-forming galaxies at z ∼ 2.3. We divide our sample into two bins based on their location in the [OIII]5007/Hβ vs. [NII]6584/Hα BPT diagram, and perform the first differential study of the rest-UV properties of massive ionizing stars as a function of rest-optical emission-line ratios. Fitting BPASS stellar population synthesis models, including nebular continuum emission, to our rest-UV composite spectra, we find that high-redshift galaxies offset towards higher [OIII]λ5007/Hβ and [NII]λ6584/Hα have younger ages ($\log (\textrm {~Age/yr})=7.20^{+0.57}_{-0.20}$) and lower stellar metallicities ($Z_*=0.0010^{+0.0011}_{-0.0003}$) resulting in a harder ionizing spectrum, compared to the galaxies in our sample that lie on the local BPT star-forming sequence ($\log (\textrm {Age/yr})=8.57^{+0.88}_{-0.84}$, $Z_*=0.0019^{+0.0006}_{-0.0006}$). Additionally, we find that the offset galaxies have an ionization parameter of $\log (U)=-3.04^{+0.06}_{-0.11}$ and nebular metallicity of ($12+\log (\textrm {~O/H})=8.40^{+0.06}_{-0.07}$), and the non-offset galaxies have an ionization parameter of $\log (U)=-3.11^{+0.08}_{-0.08}$ and nebular metallicity of $12+\log (\textrm {~O/H})=8.30^{+0.05}_{-0.06}$. The stellar and nebular metallicities derived for our sample imply that the galaxies offset from the local BPT relation are more α-enhanced ($7.28^{+2.52}_{-2.82}\textrm {~O/Fe}_{\odot }$) compared to those consistent with the local sequence ($3.04^{+0.95}_{-0.54}\textrm {~O/Fe}_{\odot }$). However, even galaxies that are entirely consistent with the local nebular excitation sequence appear to be α-enhanced – in contrast with typical local systems. Such differences must be considered when estimating gas-phase oxygen abundances at high redshift based on strong emission-line ratios. Specifically, a similarity in the location of high-redshift and local galaxies in the BPT diagram may not be indicative of a similarity in their physical properties.


Sign in / Sign up

Export Citation Format

Share Document