scholarly journals Solar Surface Magnetoconvection

2003 ◽  
Vol 210 ◽  
pp. 169-180 ◽  
Author(s):  
Robert F. Stein ◽  
Åke Nordlund

Magnetoconvection simulations on meso-granule and granule scales near the solar surface are used to study small scale dynamo activity, the emergence and disappearance of magnetic flux tubes, and the formation and evolution of micropores.From weak seed fields, convective motions produce highly intermittent magnetic fields in the intergranular lanes which collect over the boundaries of the underlying meso-granular scale cells. Instances of both emerging magnetic flux loops and magnetic flux disappearing from the surface occur in the simulations. We show an example of a flux tube collapsing to kG field strength and discuss how the nature of flux disappearance can be investigated. Observed Stokes profiles of small magnetic structures are severely distorted by telescope diffraction and seeing.Because of the strong stratification, there is little recycling of plasma and field in the surface layers. Recycling instead occurs by exchange with the deep layers of the convection zone. Plasma and field from the surface descend through the convection zone and rise again toward the surface. Because only a tiny fraction of plasma rising up from deep in the convection zone reaches the surface due to mass conservation, little of the magnetic energy resides in the near surface layers. Thus the dynamo acting on weak incoherent fields is global, rather than a local surface dynamo.

2012 ◽  
Vol 8 (S294) ◽  
pp. 95-106 ◽  
Author(s):  
Manfred Schüssler

AbstractAn overview is given about recent developments and results of comprehensive simulations of magneto-convective processes in the near-surface layers and photosphere of the Sun. Simulations now cover a wide range of phenomena, from whole active regions, over individual sunspots and pores, magnetic flux concentrations and vortices in intergranular lanes, down to the intricate mixed-polarity structure of the magnetic field generated by small-scale dynamo action. The simulations in concert with high-resolution observations have provided breakthroughs in our understanding of the structure and dynamics of the magnetic fields in the solar photosphere.


1976 ◽  
Vol 71 ◽  
pp. 69-99 ◽  
Author(s):  
J. O. Stenflo

The observed properties of small-scale solar magnetic fields are reviewed. Most of the magnetic flux in the photosphere is in the form of strong fields of about 100–200 mT (1–2 kG), which have remarkably similar properties regardless of whether they occur in active or quiet regions. These fields are associated with strong atmospheric heating. Flux concentrations decay at a rate of about 107 Wb s-1, independent of the amount of flux in the decaying structure. The decay occurs by smaller flux fragments breaking loose from the larger ones, i.e. a transfer of magnetic flux from smaller to larger Fourier wave numbers, into the wave-number regime where ohmic diffusion becomes significant. This takes place in a time-scale much shorter than the length of the solar cycle.The field amplification occurs mainly below the solar surface, since very little magnetic flux appears in diffuse form in the photosphere, and the life-time of the smallest flux elements is very short. The observations further suggest that most of the magnetic flux in quiet regions is supplied directly from below the solar surface rather than being the result of turbulent diffusion of active-region magnetic fields.


1990 ◽  
Vol 142 ◽  
pp. 60-61
Author(s):  
Sydney D'Silva ◽  
Arnab Rai Choudhuri

Working under the hypothesis that magnetic flux in the sun is generated at the bottom of the convection zone, Choudhuri and Gilman (1987; Astrophys. J. 316, 788) found that a magnetic flux tube symmetric around the rotation axis, when released at the bottom of the convection zone, gets deflected by the Coriolis force and tends to move parallel to the rotation axis as it rises in the convection zone. As a result, all the flux emerges at rather high latitudes and the flux observed at the typical sunspot latitudes remains unexplained. Choudhuri(1989; Solar Physics, in press) finds that non-axisymmetric perturbations too cannot subdue the Coriolis force. In this paper, we no longer treat the convection zone to be passive as in the previous papers, but we consider the role of turbulence in the convection zone in inhibiting the Coriolis force. The interaction of the flux tubes with the turbulence is treated in a phenomenological way as follows: (1) Large scale turbulence on the scale of giant cells can physically drag the tubes outwards, thus pulling the flux towards lower latitudes by dominating over the Coriolis force. (2) Small scale turbulence of the size of the tubes can exchange angular momentum with the tube, thus suppressing the growth of the Coriolis force and making the tubes emerge at lower latitudes. Numerical simulations show that the giant cells can drag the tubes and make them emerge at lower latitudes only if the velocities within the giant cells are unrealistically large or if the radii of the flux tubes are as small as 10 km. However, small scale turbulence can successfully suppress the growth of the Coriolis force if the tubes have radii smaller than about 300 km which may not be unreasonable. Such flux tubes can then emerge at low latitudes where sunspots are seen.


2019 ◽  
Vol 5 (1) ◽  
pp. eaau2307 ◽  
Author(s):  
H. Hotta ◽  
H. Iijima ◽  
K. Kusano

The solar convection zone is filled with turbulent convection in highly stratified plasma. Several theoretical and observational studies suggest that the numerical calculations overestimate the convection velocity. Since all deep convection zone calculations exclude the solar surface due to substantial temporal and spatial scale separations, the solar surface, which drives the thermal convection with efficient radiative cooling, has been thought to be the key to solve this discrepancy. Thanks to the recent development in massive supercomputers, we are successful in performing the comprehensive calculation covering the whole solar convection zone. We compare the results with and without the solar surface in the local domain and without the surface in the full sphere. The calculations do not include the rotation and the magnetic field. The surface region has an unexpectedly weak influence on the deep convection zone. We find that just including the solar surface cannot solve the problem.


Author(s):  
J. A. Knapp ◽  
D. M. Follstaedt ◽  
S. M. Myers

Detailed finite-element modeling of nanoindentation data is used to obtain accurate mechanical properties of very thin films or surface-modified layers independently of the properties of the underlying substrates. These procedures accurately deduce the yield strength, elastic modulus, and layer hardness, and greatly increase the usefulness of indentation testing with very thin surface layers. Moreover, extraction of the effective Young’s modulus in the near surface region should enable mechanical damage studies on a small scale. This paper presents a brief overview of the procedures involved and illustrates them with He-implanted Ni.


1993 ◽  
Vol 157 ◽  
pp. 27-39
Author(s):  
M. Schüssler

The structure of solar surface magnetic fields, the way they erupt from the the convection zone below, and processes like flux expulsion and fragmentation instabilities support the view that magnetic flux in a stellar convection zone is in an intermittent, fragmented state which can be described as an ensemble of magnetic flux tubes. Depending on size and field strength, the dynamics of magnetic flux tubes can strongly differ from the behavior of a passive, diffuse field which is often assumed in conventional mean-field dynamo theory. Observed properties of active regions like emergence in low latitudes, Hale's polarity rules, tilt angles, and the process of sunspot formation from smaller fragments, together with theoretical considerations of the dynamics of buoyant flux tubes indicate that the magnetic structures which erupt in an emerging active region are not passive to convection and originate in a source region (presumably an overshoot layer below the convection zone proper) with a field strength of at least 105 G, far beyond the equipartition field strength with respect to convective flows. We discuss the consequences of such a situation for dynamo theory of the solar cycle and consider the possibility of dynamo models on the basis of flux tubes. A simple, illustrative example of a flux tube dynamo is presented.


2020 ◽  
Vol 86 (4) ◽  
Author(s):  
Muni Zhou ◽  
Nuno F. Loureiro ◽  
Dmitri A. Uzdensky

We report on an analytical and numerical study of the dynamics of a three-dimensional array of identical magnetic flux tubes in the reduced-magnetohydrodynamic description of the plasma. We propose that the long-time evolution of this system is dictated by flux-tube mergers, and that such mergers are dynamically constrained by the conservation of the pertinent (ideal) invariants, viz. the magnetic potential and axial fluxes of each tube. We also propose that in the direction perpendicular to the merging plane, flux tubes evolve in a critically balanced fashion. These notions allow us to construct an analytical model for how quantities such as the magnetic energy and the energy-containing scale evolve as functions of time. Of particular importance is the conclusion that, like its two-dimensional counterpart, this system exhibits an inverse transfer of magnetic energy that terminates only at the system scale. We perform direct numerical simulations that confirm these predictions and reveal other interesting aspects of the evolution of the system. We find, for example, that the early time evolution is characterized by a sharp decay of the initial magnetic energy, which we attribute to the ubiquitous formation of current sheets. We also show that a quantitatively similar inverse transfer of magnetic energy is observed when the initial condition is a random, small-scale magnetic seed field.


1990 ◽  
Vol 138 ◽  
pp. 309-314
Author(s):  
J.O. Stenflo

The pattern of solar magnetic fields has been used as a tracer to determine how the sun's rotation rate varies with latitude and time. Two distinctly different rotation laws emerge from such an analysis, one agreeing with the surface Doppler rotation rate, the other corresponding to much more rigid rotation with a small polar spin-up. Detailed analysis shows that this second law cannot be explained in terms of flux redistribution on the solar surface, but that it represents the rotation properties of the sources of magnetic flux, which are likely to be located at the bottom of the convection zone.The rotational phase velocity of the source pattern is found to be constant with time, which suggests that the depth at which the magnetic flux is stored and amplified inside the sun does not vary with the solar cycle, and that the phase velocity also represents the plasma velocity.


1990 ◽  
Vol 138 ◽  
pp. 161-179
Author(s):  
M. Schüssler

The state of theoretical description of small-scale concentrated magnetic fields in the solar photosphere (excluding oscillations and wave propagation) is reviewed with emphasis on work done since 1982. The processes which probably lead to the formation of strong fields (flux expulsion, convective collapse) are discussed in some detail and the present understanding of the subsequent (quasi-)equilibrium state is summarized. We consider in particular the magnetic and thermal structure of the basic magnetic flux concentrations (magnetic elements) and stress the importance of radiative transfer effects, e.g. the horizontal heat exchange with the surroundings and the effect of radiation from the hot bottom and walls on the upper layers. Velocity fields within and around magnetic flux concentrations are discussed with emphasis on shift and asymmetry of the observed Stokes V-profiles which have recently been understood in terms of a downflow in the immediate vicinity outside magnetic structures. Reconnection and instabilities are considered as possible destruction processes for magnetic elements.


2021 ◽  
Vol 9 ◽  
Author(s):  
Qiang Liu ◽  
Yan Zhao ◽  
Guoqing Zhao

The small-scale interplanetary magnetic flux ropes (SIMFRs) are common magnetic structures in the interplanetary space, yet their origination is still an open question. In this article, we surveyed 63 SIMFRs found within 6-day window around the heliospheric current sheet (HCS) and investigated their axial direction, as well as the local normal direction of the HCS. Results showed that the majority (48/63) of the SIMFRs were quasi-parallel to the associated HCS (i.e., the axial direction of SIMFRs was quasi-perpendicular to the normal direction of the associated HCS). They also showed that the SIMFRs quasi-parallel to the associated HCS statistically had shorter duration than the cases quasi-perpendicular. The results indicate that most of these SIMFRs may be generated in the nearby HCSs.


Sign in / Sign up

Export Citation Format

Share Document