scholarly journals The Tautenburg Part Of The Programme Studying The Main Meridional Section Of The Galaxy

1988 ◽  
Vol 133 ◽  
pp. 451-454
Author(s):  
E. Schilbach

The programme for the determination of proper motions with reference to galaxies for 6000 stars on 17 fields near the main meridional section of the Galaxy is presented. For each field there are 2 or 3 first-epoch plates taken with the Tautenburg Schmidt-telescope before 1970. In preliminary investigations the mean error of an individual proper motion was found to be per century both for bright (8m–12m) and for faint (16m–18m) stars.

2021 ◽  
Vol 163 (1) ◽  
pp. 1
Author(s):  
Dana I. Casetti-Dinescu ◽  
Caitlin K. Hansen ◽  
Terrence M. Girard ◽  
Vera Kozhurina-Platais ◽  
Imants Platais ◽  
...  

Abstract We measure the absolute proper motion of Leo I using a WFPC2/HST data set that spans up to 10 yr to date the longest time baseline utilized for this satellite. The measurement relies on ∼2300 Leo I stars located near the center of light of the galaxy; the correction to absolute proper motion is based on 174 Gaia EDR3 stars and 10 galaxies. Having generated highly precise, relative proper motions for all Gaia EDR3 stars in our WFPC2 field of study, our correction to the absolute EDR3 system does not rely on these Gaia stars being Leo I members. This new determination also benefits from a recently improved astrometric calibration of WFPC2. The resulting proper-motion value, (μ α , μ δ ) = (−0.007 ± 0.035, − 0.119 ± 0.026) mas yr−1 is in agreement with recent, large-area, Gaia EDR3-based determinations. We discuss all the recent measurements of Leo I’s proper motion and adopt a combined, multistudy average of ( μ α 3 meas , μ δ 3 meas ) = ( − 0.036 ± 0.016 , − 0.130 ± 0.010 ) mas yr−1. This value of absolute proper motion for Leo I indicates its orbital pole is well aligned with that of the vast polar structure, defined by the majority of the brightest dwarf spheroidal satellites of the Milky Way.


2007 ◽  
Vol 3 (S248) ◽  
pp. 303-309
Author(s):  
T. M. Girard

AbstractAn overview of currently available, large-area, proper-motion catalogs is presented. These include the well-known catalogs based on historical Schmidt-telescope surveys as well as other projects that make use of observational material the primary purpose of which, from inception, was the determination of proper motions. The various catalogs are characterized and compared, with an emphasis on their limitations and their appropriateness for various astrophysical uses.In addition to allowing for the maintenance of a practical celestial reference system, absolute proper-motion surveys provide the raw material from which a better understanding of our Galaxy's structure and kinematics can be built. Several examples will be cited in which large proper-motion surveys are used to probe and describe the distinct stellar components that comprise our Milky Way Galaxy.


1966 ◽  
Vol 25 ◽  
pp. 93-97
Author(s):  
Richard Woolley

It is now possible to determine proper motions of high-velocity objects in such a way as to obtain with some accuracy the velocity vector relevant to the Sun. If a potential field of the Galaxy is assumed, one can compute an actual orbit. A determination of the velocity of the globular clusterωCentauri has recently been completed at Greenwich, and it is found that the orbit is strongly retrograde in the Galaxy. Similar calculations may be made, though with less certainty, in the case of RR Lyrae variable stars.


1995 ◽  
Vol 166 ◽  
pp. 217-226
Author(s):  
M. Miyamoto

An accumulation of high precision astrometric data in conjunction with high-precision monitoring of the Earth's orientation, motivates “Galactic Astronomy”. As regards local kinematics, all of the three components of both the vorticity and the shear of stars can be completely determined, in addition to the velocity ellipsoid. We can now be released from the constraint of the “axisymmetric” galaxy. The determination of the proper motion of the LMC will be crucial to understanding the global structure and dynamics of the Galaxy with the dark halo and MACHO's motions.


1994 ◽  
Vol 161 ◽  
pp. 453-459 ◽  
Author(s):  
M. Odenkirchen ◽  
R.-D. Scholz ◽  
M.J. Irwin

We present results from orbit integrations for the globular clusters M 3 and M 92. Absolute proper motions recently measured from Tautenburg Schmidt plates and a three-component mass model for the Galaxy have been used to derive the galactic orbits of these clusters. Orbital parameters and the influence of observational uncertainties on the determination of the orbits are discussed.


1995 ◽  
Vol 148 ◽  
pp. 267-270 ◽  
Author(s):  
E. Schilbach ◽  
R.-D. Scholz ◽  
S. Hirte

AbstractThe combination of Tautenburg plates and automatic measuring machines provides a powerful tool to obtain photometry and proper motions of a great number of stars for statistical investigations of our Galaxy. Photographic photometry with an accuracy of about 0.07 mag can be obtained provided two plates of the same colour and a sufficient number of photometric standards are available. With two plate pairs and a 20 years baseline, a proper motion accuracy better than 4 mas/year can be achieved for stars over a wide range of magnitudes. Outside the Galactic plane proper motions are determined with respect to hundreds of background galaxies.


1995 ◽  
Vol 164 ◽  
pp. 405-405 ◽  
Author(s):  
R.-D. Scholz ◽  
S. Hirte ◽  
M.J. Irwin ◽  
M. Odenkirchen

From measurements of Tautenburg Schmidt plates with the APM facility in Cambridge we obtained absolute proper motions of the Galactic globular clusters M 3 and M 92 directly with respect to large numbers of background galaxies (Scholz et al. 1993, 1994). We have extended our work to the dSphs in Draco and Ursa Minor (Scholz & Irwin 1994) and to other Galactic globular clusters using Tautenburg, Palomar and UK Schmidt plates. Combining our absolute proper motion of a cluster with its known radial velocity and distance (using common parameters of the solar motion) we derive the cluster orbit in the Galaxy (cf. Odenkirchen & Brosche 1992).


1970 ◽  
Vol 7 ◽  
pp. 74-76
Author(s):  
A. N. Deutsch

The determination of secular parallaxes of stars is usually based on meridian observations of proper motions of bright stars, this introducing known systematic errors. The mean parallaxes of stars can be obtained by means of radial velocities which are known for the bright stars. The more perspective method, the reference of stars to galaxies, is not applicable at low galactic latitudes.


Sign in / Sign up

Export Citation Format

Share Document