scholarly journals Maintenance and densification: current proper-motion catalogs

2007 ◽  
Vol 3 (S248) ◽  
pp. 303-309
Author(s):  
T. M. Girard

AbstractAn overview of currently available, large-area, proper-motion catalogs is presented. These include the well-known catalogs based on historical Schmidt-telescope surveys as well as other projects that make use of observational material the primary purpose of which, from inception, was the determination of proper motions. The various catalogs are characterized and compared, with an emphasis on their limitations and their appropriateness for various astrophysical uses.In addition to allowing for the maintenance of a practical celestial reference system, absolute proper-motion surveys provide the raw material from which a better understanding of our Galaxy's structure and kinematics can be built. Several examples will be cited in which large proper-motion surveys are used to probe and describe the distinct stellar components that comprise our Milky Way Galaxy.

2021 ◽  
Vol 163 (1) ◽  
pp. 1
Author(s):  
Dana I. Casetti-Dinescu ◽  
Caitlin K. Hansen ◽  
Terrence M. Girard ◽  
Vera Kozhurina-Platais ◽  
Imants Platais ◽  
...  

Abstract We measure the absolute proper motion of Leo I using a WFPC2/HST data set that spans up to 10 yr to date the longest time baseline utilized for this satellite. The measurement relies on ∼2300 Leo I stars located near the center of light of the galaxy; the correction to absolute proper motion is based on 174 Gaia EDR3 stars and 10 galaxies. Having generated highly precise, relative proper motions for all Gaia EDR3 stars in our WFPC2 field of study, our correction to the absolute EDR3 system does not rely on these Gaia stars being Leo I members. This new determination also benefits from a recently improved astrometric calibration of WFPC2. The resulting proper-motion value, (μ α , μ δ ) = (−0.007 ± 0.035, − 0.119 ± 0.026) mas yr−1 is in agreement with recent, large-area, Gaia EDR3-based determinations. We discuss all the recent measurements of Leo I’s proper motion and adopt a combined, multistudy average of ( μ α 3 meas , μ δ 3 meas ) = ( − 0.036 ± 0.016 , − 0.130 ± 0.010 ) mas yr−1. This value of absolute proper motion for Leo I indicates its orbital pole is well aligned with that of the vast polar structure, defined by the majority of the brightest dwarf spheroidal satellites of the Milky Way.


1988 ◽  
Vol 133 ◽  
pp. 451-454
Author(s):  
E. Schilbach

The programme for the determination of proper motions with reference to galaxies for 6000 stars on 17 fields near the main meridional section of the Galaxy is presented. For each field there are 2 or 3 first-epoch plates taken with the Tautenburg Schmidt-telescope before 1970. In preliminary investigations the mean error of an individual proper motion was found to be per century both for bright (8m–12m) and for faint (16m–18m) stars.


1990 ◽  
Vol 141 ◽  
pp. 407-417
Author(s):  
A. R. Klemola

The Lick proper motion program, one of several using galaxies as a reference frame, is summarized with a statement of work accomplished for the non-Milky Way sky. The problem of identifying relatively transparent regions at low galactic latitudes is discussed, with tabular results presented for 41 windows from the literature having observable galaxies. These fields may be helpful for attaching stellar proper motions directly to the extragalactic frame.


2017 ◽  
Vol 12 (S330) ◽  
pp. 210-213
Author(s):  
Tobias K. Fritz ◽  
Sean T. Linden ◽  
Paul Zivick ◽  
Nitya Kallivayalil ◽  
Jo Bovy

AbstractWe present our effort to measure the proper motions of satellites in the halo of the Milky Way with mainly ground based telescopes as a precursor on what is possible with Gaia. For our first study, we used wide field optical data from the LBT combined with a first epoch of SDSS observations, on the globular cluster Palomar 5 (Pal 5). Since Pal 5 is associated with a tidal stream it is very useful to constrain the shape of the potential of the Milky Way. The motion and other properties of the Pal 5 system constrain the inner halo of the Milky Way to be rather spherical. Further, we combined adaptive optics and HST to get an absolute proper motion of the globular cluster Pyxis. Using the proper motion and the line-of-sight velocity we find that the orbit of Pyxis is rather eccentric with its apocenter at more than 100 kpc and its pericenter at about 30 kpc. The dynamics excludes an association with the ATLAS stream, the Magellanic clouds, and all satellites of the Milky Way at least down to the mass of Leo II. However, the properties of Pyxis, like metallicity and age, point to an origin from a dwarf of at least the mass of Leo II. We therefore propose that Pyxis originated from an unknown relatively massive dwarf galaxy, which is likely today fully disrupted. Assuming that Pyxis is bound to the Milky Way we derive a 68% lower limit on the mass of the Milky Way of 9.5 × 1011 M⊙.


1998 ◽  
Vol 184 ◽  
pp. 433-434
Author(s):  
A. M. Ghez ◽  
B. L. Klein ◽  
C. McCabe ◽  
M. Morris ◽  
E. E. Becklin

Although the notion that the Milky Way galaxy contains a supermassive central black hole has been around for more than two decades, it has been difficult to prove that one exists. The challenge is to assess the distribution of matter in the few central parsecs of the Galaxy. Assuming that gravity is the dominant force, the motion of the stars and gas in the vicinity of the putative black hole offers a robust method for accomplishing this task, by revealing the mass interior to the radius of the objects studied. Thus objects located closest to the Galactic Center provide the strongest constraints on the black hole hypothesis.


1995 ◽  
Vol 148 ◽  
pp. 267-270 ◽  
Author(s):  
E. Schilbach ◽  
R.-D. Scholz ◽  
S. Hirte

AbstractThe combination of Tautenburg plates and automatic measuring machines provides a powerful tool to obtain photometry and proper motions of a great number of stars for statistical investigations of our Galaxy. Photographic photometry with an accuracy of about 0.07 mag can be obtained provided two plates of the same colour and a sufficient number of photometric standards are available. With two plate pairs and a 20 years baseline, a proper motion accuracy better than 4 mas/year can be achieved for stars over a wide range of magnitudes. Outside the Galactic plane proper motions are determined with respect to hundreds of background galaxies.


2020 ◽  
Vol 641 ◽  
pp. A134
Author(s):  
Thomas Schmidt ◽  
Maria-Rosa L. Cioni ◽  
Florian Niederhofer ◽  
Kenji Bekki ◽  
Cameron P. M. Bell ◽  
...  

Context. The Magellanic Clouds are a nearby pair of interacting dwarf galaxies and satellites of the Milky Way. Studying their kinematic properties is essential to understanding their origin and dynamical evolution. They have prominent tidal features and the kinematics of these features can give hints about the formation of tidal dwarfs, galaxy merging and the stripping of gas. In addition they are an example of dwarf galaxies that are in the process of merging with a massive galaxy. Aims. The goal of this study is to investigate the kinematics of the Magellanic Bridge, a tidal feature connecting the Magellanic Clouds, using stellar proper motions to understand their most recent interaction. Methods. We calculated proper motions based on multi-epoch Ks-band aperture photometry, which were obtained with the Visible and Infrared Survey Telescope for Astronomy (VISTA), spanning a time of 1−3 yr, and we compared them with Gaia Data Release 2 (DR2) proper motions. We tested two methods for removing Milky Way foreground stars using Gaia DR2 parallaxes in combination with VISTA photometry or using distances based on Bayesian inference. Results. We obtained proper motions for a total of 576 411 unique sources over an area of 23 deg2 covering the Magellanic Bridge including mainly Milky Way foreground stars, background galaxies, and a small population of possible Magellanic Bridge stars (< 15 000), which mostly consist of giant stars with 11.0 <  Ks <  19.5 mag. The first proper motion measurement of the Magellanic Bridge centre is 1.80 ± 0.25 mas yr−1 in right ascension and −0.72 ± 0.13 mas yr−1 in declination. The proper motion measurements of stars along the Magellanic Bridge from the VISTA survey of the Magellanic Cloud system (VMC) and Gaia DR2 data confirm a flow motion from the Small to the Large Magellanic Cloud. This flow can now be measured all across the entire length of the Magellanic Bridge. Conclusions. Our measurements indicate that the Magellanic Bridge is stretching. By converting the proper motions to tangential velocities, we obtain ∼110 km s−1 in the plane of the sky. Therefore it would take a star roughly 177 Myr to cross the Magellanic Bridge.


1974 ◽  
Vol 61 ◽  
pp. 193-200
Author(s):  
A. N. Deutsch ◽  
A. R. Klemola

At Lick the second phase of the proper motion program is in progress. In addition to generally selected stars, as was done for the first phase, so far over 30000 stars of special types of astro-physical interest and about 29000 AGK3 stars have been selected for measurement.In accordance with the Pulkovo program, second-epoch photography with galaxies is being continued at Pulkovo, Moscow and Tashkent, and proper motions with reference to galaxies are derived.Analyses of proper motions at Pulkovo and Lick show agreement in some instances and disagreement in others. The same applies to comparisons with fundamental catalogues. The analyses suffer to some extent from absence of proper motions in the zone of avoidance and in the southern part of the sky.In the southern hemisphere, first-epoch photography of 164 fields with galaxies has been completed using the Maksutov double-meniscus telescope at Cerro El Roble in Chile, and a complete coverage of the sky has been started with the same telescope; this work is being done jointly by the Soviet and Chilean astronomers. On the Yale-Columbia southern program, the first-epoch photography is nearly completed with the double astrograph at Leoncito in Argentina. There are plans at Lohrmann Institute, Dresden, to take photographs with the 2-m Schmidt telescope at Tautenburg, thus providing first-epoch plates for proper motions with reference to galaxies.


1995 ◽  
Vol 148 ◽  
pp. 228-231
Author(s):  
J. Souchay ◽  
E. Schilbach

AbstractAs a first step of our open cluster programme a catalogue of proper motions and photographic U, B, V, R magnitudes for stars up to 18 mag within a region centered near Alcyone is presented. The catalogue is based on MAMA measurements of plates taken with Tautenburg and OCA (CERGA) Schmidt telescopes. The photometric survey includes ca. 65000 stars and covers a total field of about 25 square degrees. Proper motions have been obtained for ca. 40000 stars within a central 17 square degree region of this field. For the majority of stars in the survey an accuracy of 0.08 mag and 2 mas/year has been estimated for photometric data and proper motions, respectively. The results of the determination of the Pleiades membership up to 18th magnitude is presented.


1993 ◽  
Vol 156 ◽  
pp. 255-260
Author(s):  
E. Schilbach ◽  
J. Guibert ◽  
M. Geffert ◽  
S. Hirte

A programme for the determination of proper motions and photographic B, V, R magnitudes for stars up to 18m within a 4° by 4° region centered near Alcyone is described. We use MAMA measurements of plates taken with Tautenburg and OCA Schmidt telescopes as well as with the double refractor of Bonn and Carte du Ciel plates. To check the stability of the solution three different methods of reduction are applied.According to the results of the pilot programme a final proper motion accuracy of about 2 mas/a can be achieved for the majority of stars in the survey.


Sign in / Sign up

Export Citation Format

Share Document