scholarly journals Planetary Nebulae in the Andromeda Galaxy and its Companions

1978 ◽  
Vol 76 ◽  
pp. 19-34 ◽  
Author(s):  
Holland C. Ford

The identification and observation of planetary nebulae in the Andromeda galaxy (M31) and its companions provide a powerful means of studying their old stellar populations. The direct determination of chemical abundances and radial velocities for even the brightest individual old stars is impossible at the distance of M31. The strongest emission lines of planetary nebulae are as bright as the entire visual continuum of the most luminous giants. Consequently, spectrophotometry of planetary nebulae presently provides the only direct measure of chemical abundances, and, with the exception of globular clusters, the only radial velocity determinations for the old populations.

2016 ◽  
Vol 12 (S323) ◽  
pp. 65-69 ◽  
Author(s):  
Jorge García-Rojas ◽  
Romano L. M. Corradi ◽  
Henri M. J. Boffin ◽  
Hektor Monteiro ◽  
David Jones ◽  
...  

AbstractThe discrepancy between abundances computed using optical recombination lines (ORLs) and collisionally excited lines (CELs) is a major, unresolved problem with significant implications for the determination of chemical abundances throughout the Universe. In planetary nebulae (PNe), the most common explanation for the discrepancy is that two different gas phases coexist: a hot component with standard metallicity, and a much colder plasma enhanced in heavy elements. This dual nature is not predicted by mass loss theories, and direct observational support for it is still weak. In this work, we present our recent findings that demonstrate that the largest abundance discrepancies are associated with close binary central stars. OSIRIS-GTC tunable filter imaging of the faint O ii ORLs and MUSE-VLT deep 2D spectrophotometry confirm that O ii ORL emission is more centrally concentrated than that of [Oiii] CELs and, therefore, that the abundance discrepancy may be closely linked to binary evolution.


2018 ◽  
Vol 14 (S343) ◽  
pp. 377-378
Author(s):  
Roberto D. D. Costa ◽  
Paulo J. A. Lago

AbstractWe investigate, in the light of new diagnostic diagrams, the role of shocks in the ionization profile of type-I planetary nebulae, and their relation to the empirical derivation of chemical abundances. We apply our technique to two well-known type-I objects: NGC 2440 and NGC 6302. Our results indicate that shocks play a very important role in the spectra of both nebulae and, since the presence of shocks reinforces the flux of low ionization lines, this artificial reinforcement can lead to incorrect chemical abundances, when they are derived through Ionization Correction Factors, at least for type-I PNe.


2020 ◽  
Vol 495 (1) ◽  
pp. 1016-1034 ◽  
Author(s):  
Mónica Rodríguez

ABSTRACT I explore the effects of observational errors on nebular chemical abundances using a sample of 179 optical spectra of 42 planetary nebulae (PNe) observed by different authors. The spectra are analysed in a homogeneous way to derive physical conditions and ionic and total abundances. The effects of recombination on the [O ii] and [N ii] emission lines are estimated by including the effective recombination coefficients in the statistical equilibrium equations that are solved for O+ and N+. The results are shown to be significantly different than those derived using previous approaches. The O+ abundances derived with the blue and red lines of [O ii] differ by up to a factor of 6, indicating that the relative intensities of lines widely separated in wavelength can be highly uncertain. In fact, the He ii lines in the range 4000–6800 Å imply that most of the spectra are bluer than expected. Scores are assigned to the spectra using different criteria and the spectrum with the highest score for each PN is taken as the reference spectrum. The differences between the abundances derived with the reference spectrum and those derived with the other spectra available for each object are used to estimate the 1σ observational uncertainties in the final abundances: 0.11 dex for O/H and Ar/H, 0.14 dex for N/H, Ne/H, and Cl/H, and 0.16 dex for S/H.


1993 ◽  
Vol 155 ◽  
pp. 570-570
Author(s):  
Robin Ciardullo ◽  
George Jacoby

Several authors have analyzed the kinematics of elliptical galaxies using surface photometry in combination with absorption line velocity dispersion measurements. However, these analyses never explore the halos of galaxies, since the best absorption line measurements extend only ∼1 re. The only way to extend our knowledge of stellar kinematics to larger radii is to use the emission lines of planetary nebula for radial velocity measurements.


2016 ◽  
Vol 12 (S323) ◽  
pp. 333-334
Author(s):  
Nazim Aksaker ◽  
Sinan K. Yerli ◽  
Ümit Kızıloğlu ◽  
Betül Atalay

AbstractIn this work, we present results of long slit spectrophotometric emission line flux observations of selected planetary nebulae (PNe). We have measured absolute fluxes and equivalent widths (EW) of all observable emission lines. In addition to these observations, electron temperatures (Te), densities (Ne), and chemical abundances were also calculated. The main purpose of this work is to fill the gaps in emission line flux standards for the northern hemisphere. It is expected that the measured fluxes would be used as standard data set for further photometric and spectrometric measurements of HII regions, supernova remnants etc.


1964 ◽  
Vol 20 ◽  
pp. 41-45 ◽  
Author(s):  
L. Perek

Planetary nebulae are convenient objects for studying the large-scale structure of the Galaxy. Firstly, they are easily recognized up to considerable distances on plates taken through an objective prism, and secondly, methods have been devised by various authors to determine their distances from two observable quantities: angular diameter and surface brightness. The importance of the subsystem of planetary nebulae has been accentuated especially by the discoveries by Minkowski and Haro of large numbers of planetaries in the direction of the galactic centre. The distribution of planetaries on the sphere suggests that they are connected with the galactic nucleus, but no direct determination of their distances, which would either confirm or contradict this statement, is available. The most serious obstacle in studying the subsystem of planetaries is the lack of observing data. The aim of the reported paper (Perek 1963) is to give a tentative outline of the distribution of planetaries in space based on extensive new observing material.


2019 ◽  
Vol 628 ◽  
pp. A54 ◽  
Author(s):  
Mikhail Kovalev ◽  
Maria Bergemann ◽  
Yuan-Sen Ting ◽  
Hans-Walter Rix

Aims. We study the effects of non-local thermodynamic equilibrium (NLTE) on the determination of stellar parameters and abundances of Fe, Mg, and Ti from the medium-resolution spectra of FGK stars. Methods. We extended the Payne fitting approach to draw on NLTE and LTE spectral models. These were used to analyse the spectra of the Gaia-ESO benchmark stars and the spectra of 742 stars in 13 open and globular clusters in the Milky Way: NGC 3532, NGC 5927, NGC 2243, NGC 104, NGC 1851, NGC 2808, NGC 362, M 2, NGC 6752, NGC 1904, NGC 4833, NGC 4372, and M15. Results. Our approach accurately recovers effective temperatures, surface gravities, and abundances of the benchmark stars and clusters members. The differences between NLTE and LTE are significant in the metal-poor regime, [Fe/H] ≲ −1. The NLTE [Fe/H] values are systematically higher, whereas the average NLTE [Mg/Fe] abundance ratios are ∼0.15 dex lower, compared to LTE. Our LTE measurements of metallicities and abundances of stars in Galactic clusters are in a good agreement with the literature. Though, for most clusters, our study yields the first estimates of NLTE abundances of Fe, Mg, and Ti. Conclusion. All clusters investigated in this work are homogeneous in Fe and Ti, with the intra-cluster abundance variations of less then 0.04 dex. NGC 2808, NGC 4833, M 2, and M 15 show significant dispersions in [Mg/Fe]. Contrary to common assumptions, the NLTE analysis changes the mean abundance ratios in the clusters, but it does not influence the intra-cluster abundance dispersions.


2018 ◽  
Vol 616 ◽  
pp. A181 ◽  
Author(s):  
L. Monaco ◽  
S. Villanova ◽  
G. Carraro ◽  
A. Mucciarelli ◽  
C. Moni Bidin

Context. Globular clusters are known to host multiple stellar populations, which are a signature of their formation process. The globular cluster E3 is one of the few low-mass globulars that is thought not to host multiple populations. Aims. We investigate red giant branch stars in E3 with the aim of providing a first detailed chemical inventory for this cluster, we determine its radial velocity, and we provide additional insights into the possible presence of multiple populations in this cluster. Methods. We obtained high-resolution FLAMES-UVES/VLT spectra of four red giant branch stars likely members of E3. We performed a local thermodynamic equilibrium abundance analysis based on one-dimensional plane parallel ATLAS9 model atmospheres. Abundances were derived from line equivalent widths or spectrum synthesis. Results. We measured abundances of Na and of iron peak (Fe, V, Cr, Ni, Mn), α(Mg, Si, Ca, Ti), and neutron capture elements (Y, Ba, Eu). The mean cluster heliocentric radial velocity, metallicity, and sodium abundance ratio are νhelio = 12.6 ± 0.4 km s−1(σ = 0.6 ± 0.2 km s−1), [Fe/H] = −0.89 ± 0.08 dex, and [Na/Fe] = 0.18 ± 0.07 dex, respectively. The low Na abundance with no appreciable spread is suggestive of a cluster dominated by first-generation stars in agreement with results based on lower resolution spectroscopy. The low number of stars observed does not allow us to rule out a minor population of second-generation stars. The observed chemical abundances are compatible with the trends observed in Milky Way stars.


2016 ◽  
Vol 12 (S323) ◽  
pp. 343-344
Author(s):  
Leticia Juan de Dios ◽  
Mónica Rodríguez

AbstractAtomic data selection is one important source of systematic uncertainty since there are important variations between the values provided by different authors. We explore the effect of using different atomic data in the determination of physical conditions and chemical abundances in a sample of Galactic planetary nebulae and Hii regions. We find that the available datasets introduce significant differences in the results, especially at densities above 104 cm−3, where O/H and N/O reach uncertainties higher than a factor of 4.


2002 ◽  
Vol 207 ◽  
pp. 716-718 ◽  
Author(s):  
Miriam Rengel ◽  
Juan Mateu ◽  
Gustavo Bruzual

We present a statistical approach for determining the age of Globular Clusters (GCs) that allows estimating the age derived from CMDs more accurately than the conventional method of isochrone fitting. We measure how closely a set of synthetic CMDs constructed from different evolutionary models resemble the observed ones by determining the likelihood using Saha and χ2 statistics. The model which best matches the observational data, of a set of plausible ones, is the one with the highest value of the estimator. We apply this method to a set of three different evolutionary models presented by three different authors. Each of these sets consists again of many different models of various chemical abundances, ages, input physics and the like. We subsequently derive the age of GCs NGC 6397, M92 and M3. With a confidence level of 99%, we find that the best estimate of the age is 14.0 Gyrs within the range of 13.8 to 14.4 Gyrs for NGC 6397, 14.75 Gyrs within the range of 14.50 to 15.40 Gyrs for M92, and 16.0 Gyrs within the range of 15.9 to 16.3 Gyrs for M3.


Sign in / Sign up

Export Citation Format

Share Document