scholarly journals The impact of spectra quality on nebular abundances

2020 ◽  
Vol 495 (1) ◽  
pp. 1016-1034 ◽  
Author(s):  
Mónica Rodríguez

ABSTRACT I explore the effects of observational errors on nebular chemical abundances using a sample of 179 optical spectra of 42 planetary nebulae (PNe) observed by different authors. The spectra are analysed in a homogeneous way to derive physical conditions and ionic and total abundances. The effects of recombination on the [O ii] and [N ii] emission lines are estimated by including the effective recombination coefficients in the statistical equilibrium equations that are solved for O+ and N+. The results are shown to be significantly different than those derived using previous approaches. The O+ abundances derived with the blue and red lines of [O ii] differ by up to a factor of 6, indicating that the relative intensities of lines widely separated in wavelength can be highly uncertain. In fact, the He ii lines in the range 4000–6800 Å imply that most of the spectra are bluer than expected. Scores are assigned to the spectra using different criteria and the spectrum with the highest score for each PN is taken as the reference spectrum. The differences between the abundances derived with the reference spectrum and those derived with the other spectra available for each object are used to estimate the 1σ observational uncertainties in the final abundances: 0.11 dex for O/H and Ar/H, 0.14 dex for N/H, Ne/H, and Cl/H, and 0.16 dex for S/H.

2020 ◽  
Vol 498 (1) ◽  
pp. L82-L86
Author(s):  
V Gómez-Llanos ◽  
C Morisset ◽  
J García-Rojas ◽  
D Jones ◽  
R Wesson ◽  
...  

ABSTRACT The long-standing difference in chemical abundances determined from optical recombination lines and collisionally excited lines raises questions about our understanding of atomic physics, as well as the assumptions made when determining physical conditions and chemical abundances in astrophysical nebulae. Here, we study the recombination contribution of [O iii] 4363 and the validity of the line ratio [O iii] 4363/4959 as a temperature diagnostic in planetary nebulae with a high abundance discrepancy. We derive a fit for the recombination coefficient of [O iii] 4363 that takes into account the radiative and dielectronic recombinations, for electron temperatures from 200 to 30 000 K. We estimate the recombination contribution of [O iii] 4363 for the planetary nebulae Abell 46 and NGC 6778 by subtracting the collisional contribution from the total observed flux. We find that the spatial distribution for the estimated recombination contribution in [O iii] 4363 follows that of the O ii 4649 recombination line, both peaking in the central regions of the nebula, especially in the case of Abell 46 that has a much higher abundance discrepancy. The estimated recombination contribution reaches up to 70 and 40 per cent of the total [O iii] 4363 observed flux, for Abell 46 and NGC 6778, respectively.


Author(s):  
Miriam Peña ◽  
Liliana Hernández-Martínez ◽  
Francisco Ruiz-Escobedo

Abstract The analysis of 20 years of spectrophotometric data of the double shell planetary nebula PM 1-188 is presented, aiming to determine the time evolution of the emission lines and the physical conditions of the nebula, as a consequence of the systematic fading of its [WC 10] central star whose brightness has declined by about 10 mag in the past 40 years. Our main results include that the [O iii], [O ii], [N ii] line intensities are increasing with time in the inner nebula as a consequence of an increase in electron temperature from 11 000 K in 2005 to more than 14 000 K in 2018, due to shocks. The intensity of the same lines are decreasing in the outer nebula, due to a decrease in temperature, from 13 000 K to 7000 K, in the same period. The chemical composition of the inner and outer shells was derived and they are similar. Both nebulae present subsolar O, S and Ar abundances, while they are He, N and Ne rich. For the outer nebula the values are 12+log He/H = 11.13 ± 0.05, 12+log O/H = 8.04 ± 0.04, 12+log N/H = 7.87 ± 0.06, 12+log S/H = 7.18 ± 0.10 and 12+log Ar = 5.33 ± 0.16. The O, S and Ar abundances are several times lower than the average values found in disc non-Type I PNe, and are reminiscent of some halo PNe. From high resolution spectra, an outflow in the N-S direction was found in the inner zone. Position-velocity diagrams show that the outflow expands at velocities in the −150 to 100 km s−1 range, and both shells have expansion velocities of about 40 km s−1.


2018 ◽  
Vol 14 (S343) ◽  
pp. 409-410
Author(s):  
Denise Rocha Gonçalves ◽  
Stavros Akras

AbstractPNe are known to be photoionized objects. However they also have low-ionization structures (LIS) with different excitation behavior. We are only now starting to answer why most LIS have lower electron densities than the PN shells hosting them, and whether or not their intense emission in low-ionization lines is the key to their main excitation mechanism. Can LIS line ratios, chemical abundances and kinematics enlight the interplay between the different excitation and formation processes in PNe? Based on the spectra of five PNe with LIS and using new diagnostic diagrams from shock models, we demonstrate that LIS’s main excitation is due to shocks, whereas the other components are mainly photoionized. We propose new diagnostic diagrams involving a few emission lines ([N II], [O III], [S II]) and fshocks/f*, where fshocks and f* are the ionization photon fluxes due to the shocks and to the central star ionizing continuum, respectively.


1978 ◽  
Vol 76 ◽  
pp. 159-160
Author(s):  
R.H. Garstang ◽  
W. Derek Robb

We have calculated electron impact excitation cross sections between most of the low metastable levels of the 3d6 configuration in Fe III and of the 3d3 configuration in Fe VI have also been computed. The statistical equilibrium equations have been solved for a range of electron temperatures and electron densities, and the resulting level populations used to calculate emissivities for the forbidden lines of Fe III and Fe VI. Comparisons with observed line intensities and abundance determinations in planetary nebulae are in progress. (Paper submitted to The Astrophysical Journal.)


2016 ◽  
Vol 12 (S323) ◽  
pp. 333-334
Author(s):  
Nazim Aksaker ◽  
Sinan K. Yerli ◽  
Ümit Kızıloğlu ◽  
Betül Atalay

AbstractIn this work, we present results of long slit spectrophotometric emission line flux observations of selected planetary nebulae (PNe). We have measured absolute fluxes and equivalent widths (EW) of all observable emission lines. In addition to these observations, electron temperatures (Te), densities (Ne), and chemical abundances were also calculated. The main purpose of this work is to fill the gaps in emission line flux standards for the northern hemisphere. It is expected that the measured fluxes would be used as standard data set for further photometric and spectrometric measurements of HII regions, supernova remnants etc.


Author(s):  
A. Ali ◽  
M. A. Dopita

AbstractIn this fifth paper of the series, we examine the spectroscopy and morphology of four southern Galactic planetary nebulae Hen 2-141, NGC 5307, IC 2553, and PB 6 using new integral field spectroscopy data. The morphologies and ionisation structures of the sample are given as a set of emission-line maps. In addition, the physical conditions, chemical compositions, and kinematical characteristics of these objects are derived. The results show that PB 6 and Hen 2-141 are of very high excitation classes and IC 2553 and NGC 5307 are mid to high excitation objects. The elemental abundances reveal that PB 6 is of Type I, Hen 2-141 and IC 2553 are of Type IIa, and NGC 5307 is of Type IIb/III. The observations unveil the presence of well-defined low-ionisation structures or ‘knots’ in all objects. The diagnostic diagrams reveal that the excitation mechanism of these knots is probably by photoionisation of dense material by the nebular central stars. The physical analysis of six of these knots show no significant differences with their surrounding nebular gas, except their lower electron densities. In spite of the enhancement of the low-ionisation emission lines of these knots, their chemical abundances are nearly comparable to their surrounding nebulae, with the exception of perhaps slightly higher nitrogen abundances in the NGC 5307 knots. The integrated spectrum of IC 2553 reveals that nearly all key lines that have led researchers to characterise its central star as a weak-emission line star type are in fact of nebular origin.


1978 ◽  
Vol 76 ◽  
pp. 19-34 ◽  
Author(s):  
Holland C. Ford

The identification and observation of planetary nebulae in the Andromeda galaxy (M31) and its companions provide a powerful means of studying their old stellar populations. The direct determination of chemical abundances and radial velocities for even the brightest individual old stars is impossible at the distance of M31. The strongest emission lines of planetary nebulae are as bright as the entire visual continuum of the most luminous giants. Consequently, spectrophotometry of planetary nebulae presently provides the only direct measure of chemical abundances, and, with the exception of globular clusters, the only radial velocity determinations for the old populations.


2003 ◽  
Vol 20 (1) ◽  
pp. 129-133 ◽  
Author(s):  
R. Morganti ◽  
C. N. Tadhunter ◽  
T. A. Oosterloo ◽  
J. Holt ◽  
A. Tzioumis ◽  
...  

AbstractThe study of both neutral and ionised gas in young radio sources is providing key information on the effect the radio plasma has on the ISM of these objects. We present results obtained for the compact radio sources PKS 1549–79, 4C 12.50 and PKS 1814–63 and for the intermediate-size radio galaxy 3C 459. At least in the first two, low ionisation optical emission lines and HI absorption appear to be associated with the extended, but relatively quiescent, dusty cocoon surrounding the nucleus. The [OIII] lines are, on the other hand, mostly associated with the region of interaction between the radio plasma and the ISM, indicating a fast outflow from the centre. A case of fast outflow (up to ∼1000 km s-1) is also observed in HI in the radio source 4C 12.50. As the radio source evolves, any obscuring material along the radio axis is swept aside until, eventually, cavities (of the same kind as observed e.g. in Cygnus A) are hollowed out on either side of the nucleus. We may witness this phase in the evolution of a radio source in the radio galaxy 3C 459.


Author(s):  
José N Espíritu ◽  
Antonio Peimbert

Abstract We present a spectrum of the planetary nebula M 2-36 obtained using the Ultra Violet and Visual Echelle Spectrograph (UVES) at the Very Large Telescope (VLT). 446 emission lines are detected. We perform an analysis of the chemical composition using multiple electron temperature (Te) and density (ne) diagnostics. Te and ne are computed using a variety of methods, including collisionally excited line (CEL) ratios, O++ optical recombination lines (ORLs), and measuring the intensity of the Balmer jump. Besides the classical CEL abundances, we also present robust ionic abundances from ORLs of heavy elements. From CELs and ORLs of O++, we obtain a new value for the Abundance Discrepancy Factor (ADF) of this nebula, being ADF(O++) = 6.76 ± 0.50. From all the different line ratios that we study, we find that the object cannot be chemically homogeneous; moreover, we find that two-phased photoionization models are unable to simultaneously reproduce critical ${\rm O\, \small {II}}$ and [${\rm O\, \small {III}}$] line ratios. However, we find a three-phased model able to adequately reproduce such ratios. While we consider this to be a toy model, it is able to reproduce the observed temperature and density line diagnostics. Our analysis shows that it is important to study high ADF PNe with high spectral resolution, since its physical and chemical structure may be more complicated than previously thought.


1993 ◽  
Vol 155 ◽  
pp. 584-584 ◽  
Author(s):  
S. Torres-Peimbert ◽  
M. Peimbert ◽  
M.T. Ruitz ◽  
M. Peña

We carried out spectroscopic observations of N67 (in the SMC), and N66, N97 and N102 (in the LMC) with the 4-m telescope of CTIO. The wavelength range is λλ 3500–7400. From these we obtained physical conditions and chemical abundances of these objects.


Sign in / Sign up

Export Citation Format

Share Document