scholarly journals Relativistic effects in geodynamics

1986 ◽  
Vol 114 ◽  
pp. 241-253 ◽  
Author(s):  
C. Boucher

Geodesy has now reached such an accuracy in both measuring and modelling that time variations of the size, shape and gravity field of the Earth must be basically considered under the name of Geodynamics. The objective is therefore the description of point positions and gravity field functions in a terrestrial reference frame, together with their time variations.For this purpose, relativistic effects must be taken into account in models. Currently viable theories of gravitation such as Einstein's General Relativity can be expressed in the solar system into the parametrized post-newtonian (PPN) formalism. Basic problems such as the motion of a test particle give a satisfactory answer to the relativistic modelling in Geodynamics.The relativistic effects occur in the definition of a terrestrial reference frame and gravity field. They also appear widely into terrestrial (gravimetry, inertial techniques) and space (satellite laser, Lunar laser, VLBI, satellite radioelectric tracking …) measurements.

1980 ◽  
Vol 56 ◽  
pp. 145-153
Author(s):  
Dennis D. McCarthy

AbstractThe report of the IAU Working Group on Nutation endorsed by Commissions 4, 8, 19 and 31 at the 1979 General Assembly points out that “… the complete theory of the general nutational motion of the Earth about its center of mass may be described by the sum of two components, astronomical nutation, commonly referred to as nutation, which is nutation with respect to a space-fixed coordinate system, and polar motion, which is nutation with respect to a body-fixed system …”. Unlike the situation for the space-fixed frame, there is not an adequate, formally accepted, body-fixed system for this purpose. The Conventional International Origin (CIO) as it is presently defined is no longer acceptable because of recent improvements in observational techniques. The effective lack of this type of terrestrial reference frame limits the complete description of the general nutational motion of the Earth. In the absence of a terrestrial reference frame suitable for specifying the orientation of the Earth, it is suggested that a body-fixed system could be represented formally in a manner analogous to that used to represent the space-fixed frame. This procedure would be quite similar to methods employed currently by the International Polar Motion Service and the Bureau International de l’Heure, and would allow for the use of observations from new techniques in the definition of a terrestrial reference frame to be used to specify the complete nutational motion of the Earth.


2021 ◽  
Vol 95 (9) ◽  
Author(s):  
Jaakko Mäkinen

AbstractThe International Height Reference System (IHRS), adopted by International Association of Geodesy (IAG) in its Resolution No. 1 at the XXVI General Assembly of the International Union of Geodesy and Geophysics (IUGG) in Prague in 2015, contains two novelties. Firstly, the mean-tide concept is adopted for handling the permanent tide. While many national height systems continue to apply the mean-tide concept, this was the first time that the IAG officially introduced it for a potential field quantity. Secondly, the reference level of the height system is defined by the equipotential surface where the geopotential has a conventional value W0 = 62,636,853.4 m2 s–2. This value was first determined empirically to provide a good approximation to the global mean sea level and then adopted as a reference value by convention. I analyse the tidal aspects of the reference level based on W0. By definition, W0 is independent of the tidal concept that was adopted for the equipotential surface, but for different concepts, different functions are involved in the W of the equation W = W0. I find that, in the empirical determination of the adopted estimate W0, the permanent tide is treated inconsistently. However, the consistent estimate from the same data rounds off to the same value. I discuss the tidal conventions and formulas for the International Height Reference Frame (IHRF) and the realisation of the IHRS. I propose a simplified definition of IHRF geopotential numbers that would make it possible to transform between the IHRF and zero-tide geopotential numbers using a simple datum-difference surface. Such a transformation would not be adequate if rigorous mean-tide formulas were imposed. The IHRF should adopt a conventional (best) estimate of the permanent tide-generating potential, such as that which is contained in the International Earth Rotation and Reference Systems Service Conventions, and use it as a basis for other conventional formulas. The tide-free coordinates of the International Terrestrial Reference Frame and tide-free Global Geopotential Models are central in the modelling of geopotential for the purposes of the IHRF. I present a set of correction formulas that can be used to move to the zero-tide model before, during, or after the processing, and finally to the mean-tide IHRF. To reduce the confusion around the multitude of tidal concepts, I propose that modelling should primarily be done using the zero-tide concept, with the mean-tide potential as an add-on. The widespread use of the expression “systems of permanent tide” may also have contributed to the confusion, as such “systems” do not have the properties that are generally associated with other “systems” in geodesy. Hence, this paper mostly uses “concept” instead of “system” when referring to the permanent tide.


1988 ◽  
Vol 128 ◽  
pp. 115-120 ◽  
Author(s):  
A. E. Niell

From a combination of 1) the location of McDonald Observatory from Lunar Laser Ranging, 2) relative station locations obtained from Very Long Baseline Interferometry (VLBI) measurements, and 3) a short tie by traditional geodesy, the geocentric coordinates of the 64 m antennas of the NASA/JPL Deep Space Network are obtained with an orientation which is related to the planetary ephemerides and to the celestial radio reference frame. Comparison with the geocentric positions of the same antennas obtained from tracking of interplanetary spacecraft shows that the two methods agree to 20 cm in distance off the spin axis and in relative longitude. The orientation difference of a 1 meter rotation about the spin axis is consistent with the error introduced into the tracking station locations due to an error in the ephemeris of Jupiter.


2020 ◽  
Author(s):  
Chunmei Zhao ◽  
Lingna Qiao ◽  
Tianming Ma

<p>The development of satellite space geodesy technology makes the establishment of global terrestrial reference frame based on the Earth’s center of mass become reality. Precise and stable terrestrial reference frame is the foundation of the Earth science research, while determination and analysis of the position of the Earth's center of mass and its change is an important part to build high precision terrestrial reference frame. Based on GNSS weekly solutions provided by IGS, the geocenter motion (GM) time series between 2007 and 2017 are obtained by means of net translation method. Then the amplitude of the annual term of geocentric motion is 2.27mm, 1.84mm and 2.13mm in the direction of X, Y and Z respectively, and the amplitude of the half-year term is 0.1mm, 0.20mm and 0.15mm respectively. In addition, some other inter-annual changes with relatively small contribution rate are found. Finally, in order to get reliable GM prediction ,two kinds of methods are used, which are ARMA and SSA+ARMA. In the short-term prediction, the accuracy of the two methods is the same, both can reach the millimeter level of prediction accuracy, but SSA+ARMA is more stable. SSA+ARMA algorithm is much better in the medium and long-term scale, and it can provide 1mm medium term prediction accuracy and 1.5mm long term prediction accuracy.</p>


Author(s):  
Yi Xie ◽  
Sergei Kopeikin

Post-Newtonian Reference Frames for Advanced Theory of the Lunar Motion and for a New Generation of Lunar Laser RangingWe overview a set of post-Newtonian reference frames for a comprehensive study of the orbital dynamics and rotational motion of Moon and Earth by means of lunar laser ranging (LLR). We employ a scalar-tensor theory of gravity depending on two post-Newtonian parameters, β and γ, and utilize the relativistic resolutions on reference frames adopted by the International Astronomical Union (IAU) in 2000. We assume that the solar system is isolated and space-time is asymptotically flat at infinity. The primary reference frame covers the entire space-time, has its origin at the solar-system barycenter (SSB) and spatial axes stretching up to infinity. The SSB frame is not rotating with respect to a set of distant quasars that are forming the International Celestial Reference Frame (ICRF). The secondary reference frame has its origin at the Earth-Moon barycenter (EMB). The EMB frame is locally-inertial and is not rotating dynamically in the sense that equation of motion of a test particle moving with respect to the EMB frame, does not contain the Coriolis and centripetal forces. Two other local frames - geocentric (GRF) and selenocentric (SRF) - have their origins at the center of mass of Earth and Moon respectively and do not rotate dynamically. Each local frame is subject to the geodetic precession both with respect to other local frames and with respect to the ICRF because of their relative motion with respect to each other. Theoretical advantage of the dynamically non-rotating local frames is in a more simple mathematical description. Each local frame can be aligned with the axes of ICRF after applying the matrix of the relativistic precession. The set of one global and three local frames is introduced in order to fully decouple the relative motion of Moon with respect to Earth from the orbital motion of the Earth-Moon barycenter as well as to connect the coordinate description of the lunar motion, an observer on Earth, and a retro-reflector on Moon to directly measurable quantities such as the proper time and the round-trip laser-light distance. We solve the gravity field equations and find out the metric tensor and the scalar field in all frames which description includes the post-Newtonian multipole moments of the gravitational field of Earth and Moon. We also derive the post-Newtonian coordinate transformations between the frames and analyze the residual gauge freedom.


2021 ◽  
Vol 55 ◽  
pp. 23-31
Author(s):  
Markus Mikschi ◽  
Johannes Böhm ◽  
Matthias Schartner

Abstract. The International VLBI Service for Geodesy and Astrometry (IVS) is currently setting up a network of smaller and thus faster radio telescopes observing at broader bandwidths for improved determination of geodetic parameters. However, this new VLBI Global Observing System (VGOS) network is not yet strongly linked to the legacy S/X network and the International Terrestrial Reference Frame (ITRF) as only station WESTFORD has ITRF2014 coordinates. In this work, we calculated VGOS station coordinates based on publicly available VGOS sessions until the end of 2019 while defining the geodetic datum by fixing the Earth orientation parameters and the coordinates of the WESTFORD station in an unconstrained adjustment. This set of new coordinates allows the determination of geodetic parameters from the analysis of VGOS sessions, which would otherwise not be possible. As it is the concept of VGOS to use smaller, faster slewing antennas in order to increase the number of observations, shorter estimation intervals for the zenith wet delays and the tropospheric gradients along with different relative constraints were tested and the best performing parametrization, judged by the baseline length repeatability, was used for the estimation of the VGOS station coordinates.


Metrologia ◽  
2010 ◽  
Vol 47 (3) ◽  
pp. 341-342
Author(s):  
H Baumann ◽  
E E Klingelé ◽  
A L Eichenberger ◽  
B Jeckelmann ◽  
P Richard

2020 ◽  
Author(s):  
Jean-Michel Lemoine ◽  
Mioara Mandea ◽  

<p>The "MARVEL gravity and reference frame mission" proposal has been selected by CNES for the start of a pre-phase A study. <br>MARVEL aims at reaching in one single mission two major and complementary goals:<br>- The monitoring of mass transfers within the Earth system with increased precision,<br>- The realization, at the millimeter level, of the terrestrial reference frame.</p><p>In the nominal configuration, a LEO satellite (400 - 450 km) in polar orbit, acting as a gravity sensor, performs optical ranging measurements on two MEO satellites (7000 km) orbiting on the same plane. The MEO satellites are equiped with the four geodetic techniques (GNSS, SLR, DORIS, VLBI), in order to meet the GGOS Earth reference frame accuracy objectives.</p><p>We also propose two alternative (and less costly) configurations, where only the first goal is fully reached:<br>- one by replacing the MEO satellites by two or more cubesats on the same orbit,<br>- the second one by using specially equipped GNSS satellites as targets for the LEO optical ranging measurements.</p><p>In any case, the goal of monitoring mass change with enhanced precision is attained through the use of high-low SST laser tracking.</p><p>We will present in detail the different configurations proposed and present the simulation plan for this pre-phase A study.</p>


2020 ◽  
Author(s):  
Detlef Angermann ◽  
Thomas Gruber ◽  
Michael Gerstl ◽  
Urs Hugentobler ◽  
Laura Sanchez ◽  
...  

<p>The Bureau of Products and Standards (BPS) supports GGOS in its goal to obtain consistent products describing the geometry, rotation and gravity field of the Earth. A key objective of the BPS is to keep track of adopted geodetic standards and conventions across all IAG components as a fundamental basis for the generation of consistent geometric and gravimetric products. This poster gives an overview about the organizational structure, the objectives and activities of the BPS. In its present structure, the two Committees “Earth System Modeling” and “Essential Geodetic Variables” as well as the newly established Working Group “Towards a consistent set of parameters for the definition of a new GRS” are associated to the BPS. Recently the updated 2<sup>nd</sup> version of the BPS inventory on standards and conventions used for the generation of IAG products has been compiled. Other activities of the Bureau include the integration of geometric and gravimetric observations towards the development of integrated products (e.g., GGRF, IHRF, atmosphere products) in cooperation with the IAG Services and the GGOS Focus Areas, the contribution to the re-writing of the IERS Conventions as Chapter Expert for Chapter 1 “General definitions and numerical standards”, the interaction with external stakeholders regarding standards and conventions (e.g., ISO, IAU, BIPM, CODATA) as well as contributions to the Working Group “Data Sharing and Development of Geodetic Standards” within the UN GGIM Subcommittee on Geodesy.</p>


1990 ◽  
Vol 141 ◽  
pp. 173-182
Author(s):  
E. M. Standish ◽  
J. G. Williams

We summarize our previous estimates of the accuracies of the ephemerides. Such accuracies determine how well one can establish the dynamical reference frame of the ephemerides. Ranging observations are the dominant data for the inner four planets and the Moon: radar-ranging for Mercury and Venus; Mariner 9 and Viking spacecraft-ranging for the Earth and Mars; lunar laser-ranging for the Moon. Optical data are significant for only the five outermost planets. Inertial mean motions for the Earth and Mars are determined to the level of 0.″003/cty during the time of the Viking mission; for Mars, this will deteriorate to 0.″01/cty or more after a decade or so; similarly, the inclination of the martian orbit upon the ecliptic was determined by Viking to the level of 0.″001. Corresponding uncertainties for Mercury and Venus are nearly two orders of magnitude larger. For the lunar mean motion with respect to inertial space, the present uncertainty is about 0.″04/cty; at times away from the present, the uncertainty of 1′/cty2 in the acceleration of longitude dominates. The mutual orientations of the equator, ecliptic and lunar orbit are known to 0.″002. The inner four planets and the Moon can now be aligned with respect to the dynamical equinox at a level of about 0.″005.


Sign in / Sign up

Export Citation Format

Share Document