scholarly journals Determining the Properties of Galaxy 2237+0305 using Gravitational Lensing

2004 ◽  
Vol 220 ◽  
pp. 109-114
Author(s):  
Cathryn Trott ◽  
Rachel Webster

We have studied the mass distribution in the lensing galaxy 2237+0305 using constraints from both gravitational lensing and photometric and spectroscopic observations. We find that with sufficient dynamical information we can constrain the mass-to-light ratio of the luminous components and determine the dynamical contribution of the disk. in addition, future observations should allow us to place constraints on the shape of the dark matter halo and its inner slope.

Author(s):  
James W Nightingale ◽  
Richard J Massey ◽  
David R Harvey ◽  
Andrew P Cooper ◽  
Amy Etherington ◽  
...  

Abstract We investigate how strong gravitational lensing can test contemporary models of massive elliptical (ME) galaxy formation, by combining a traditional decomposition of their visible stellar distribution with a lensing analysis of their mass distribution. As a proof of concept, we study a sample of three ME lenses, observing that all are composed of two distinct baryonic structures, a ‘red’ central bulge surrounded by an extended envelope of stellar material. Whilst these two components look photometrically similar, their distinct lensing effects permit a clean decomposition of their mass structure. This allows us to infer two key pieces of information about each lens galaxy: (i) the stellar mass distribution (without invoking stellar populations models) and (ii) the inner dark matter halo mass. We argue that these two measurements are crucial to testing models of ME formation, as the stellar mass profile provides a diagnostic of baryonic accretion and feedback whilst the dark matter mass places each galaxy in the context of LCDM large scale structure formation. We also detect large rotational offsets between the two stellar components and a lopsidedness in their outer mass distributions, which hold further information on the evolution of each ME. Finally, we discuss how this approach can be extended to galaxies of all Hubble types and what implication our results have for studies of strong gravitational lensing.


1997 ◽  
Vol 14 (1) ◽  
pp. 77-80 ◽  
Author(s):  
Gerhardt R. Meurer

AbstractRecent results on NGC 2915, the first blue compact dwarf galaxy to have its mass distribution modelled, are summarised. NGC 2915 is shown to have HI well beyond its detected optical extent. Its rotation curve is well determined and fit with maximum disk mass models. The dark matter halo dominates the mass distribution at nearly all radii, and has a very dense core compared to those of normal galaxies. High-mass star formation energises the HI in the centre of the galaxy, but appears to be maintained in viriai equilibrium with the dark matter halo. The implications of these results are briefly discussed.


2019 ◽  
Vol 630 ◽  
pp. A71 ◽  
Author(s):  
Alessandro Sonnenfeld ◽  
Anton T. Jaelani ◽  
James Chan ◽  
Anupreeta More ◽  
Sherry H. Suyu ◽  
...  

Context. The determination of the stellar initial mass function (IMF) of massive galaxies is one of the open problems in cosmology. Strong gravitational lensing is one of the few methods that allow us to constrain the IMF outside of the Local Group. Aims. The goal of this study is to statistically constrain the distribution in the IMF mismatch parameter, defined as the ratio between the true stellar mass of a galaxy and that inferred assuming a reference IMF, of massive galaxies from the Baryon Oscillation Spectroscopic Survey (BOSS) constant mass (CMASS) sample. Methods. We took 23 strong lenses drawn from the CMASS sample, measured their Einstein radii and stellar masses using multi-band photometry from the Hyper Suprime-Cam survey, then fitted a model distribution for the IMF mismatch parameter and dark matter halo mass to the whole sample. We used a prior on halo mass from weak lensing measurements and accounted for strong lensing selection effects in our model. Results. Assuming a Navarro Frenk and White density profile for the dark matter distribution, we infer a value μIMF = −0.04 ± 0.11 for the average base-10 logarithm of the IMF mismatch parameter, defined with respect to a Chabrier IMF. A Salpeter IMF is in tension with our measurements. Conclusions. Our results are consistent with a scenario in which the region of massive galaxies where the IMF normalisation is significantly heavier than that of the Milky Way is much smaller than the scales 5 − 10 kpc probed by the Einstein radius of the lenses in our sample, as recent spatially-resolved studies of the IMF in massive galaxies suggest.


2009 ◽  
Vol 5 (H15) ◽  
pp. 74-74
Author(s):  
L. V. E. Koopmans

AbstractStrong gravitational lensing and stellar dynamics provide two complementary methods in the study of the mass distribution of dark matter in galaxies out to redshift of unity. They are particularly powerful in the determination of the total mass and the density profile of mass early-type galaxies on kpc to tens of kpc scales, and also reveal the presence of mass-substructure on sub-kpc scale. I will shortly discuss these topics in this review.


Author(s):  
James Aird ◽  
Alison L Coil

Abstract It is widely reported, based on clustering measurements of observed active galactic nuclei (AGN) samples, that AGN reside in similar mass host dark matter halos across the bulk of cosmic time, with log $\mathcal {M}/\mathcal {M}_{\odot }\sim 12.5-13.0$ to z ∼ 2.5. We show that this is due in part to the AGN fraction in galaxies rising with increasing stellar mass, combined with AGN observational selection effects that exacerbate this trend. Here, we use AGN specific accretion rate distribution functions determined as a function of stellar mass and redshift for star-forming and quiescent galaxies separately, combined with the latest galaxy-halo connection models, to determine the parent and sub-halo mass distribution function of AGN to various observational limits. We find that while the median (sub-)halo mass of AGN, $\approx 10^{12}\mathcal {M}_{\odot }$, is fairly constant with luminosity, specific accretion rate, and redshift, the full halo mass distribution function is broad, spanning several orders of magnitude. We show that widely used methods to infer a typical dark matter halo mass based on an observed AGN clustering amplitude can result in biased, systematically high host halo masses. While the AGN satellite fraction rises with increasing parent halo mass, we find that the central galaxy is often not an AGN. Our results elucidate the physical causes for the apparent uniformity of AGN host halos across cosmic time and underscore the importance of accounting for AGN selection biases when interpreting observational AGN clustering results. We further show that AGN clustering is most easily interpreted in terms of the relative bias to galaxy samples, not from absolute bias measurements alone.


2021 ◽  
Vol 508 (1) ◽  
pp. 1543-1554
Author(s):  
K Boshkayev ◽  
T Konysbayev ◽  
E Kurmanov ◽  
O Luongo ◽  
D Malafarina ◽  
...  

ABSTRACT We consider the possibility that the Milky Way’s dark matter halo possesses a non-vanishing equation of state. Consequently, we evaluate the contribution due to the speed of sound, assuming that the dark matter content of the galaxy behaves like a fluid with pressure. In particular, we model the dark matter distribution via an exponential sphere profile in the galactic core, and inner parts of the galaxy whereas we compare the exponential sphere with three widely used profiles for the halo, i.e. the Einasto, Burkert and Isothermal profile. For the galactic core, we also compare the effects due to a dark matter distribution without black hole with the case of a supermassive black hole in vacuum and show that present observations are unable to distinguish them. Finally we investigate the expected experimental signature provided by gravitational lensing due to the presence of dark matter in the core.


2020 ◽  
Vol 493 (1) ◽  
pp. 1268-1276
Author(s):  
Andrew J Benson

ABSTRACT Simulations of cold dark matter make robust predictions about the slope and normalization of the dark matter halo and subhalo mass functions on small scales. Recent observational advances utilizing strong gravitational lensing have demonstrated the ability of this technique to place constraints on these quantities on subgalactic scales corresponding to dark matter halo masses of 106–$10^9\, \mathrm{M}_\odot$. On these scales the physics of baryons, which make up around 17 per cent of the matter content of the Universe but which are not included in pure dark matter N-body simulations, are expected to affect the growth of structure and the collapse of dark matter haloes. In this work, we develop a semi-analytic model to predict the amplitude and slope of the dark matter halo and subhalo mass functions on subgalactic scales in the presence of baryons. We find that the halo mass function is suppressed by up to 25 per cent, and the slope is modified, ranging from −1.916 to −1.868 in this mass range. These results are consistent with current measurements, but differ sufficiently from the expectations for a dark matter only universe that it may be testable in the near future.


2019 ◽  
Vol 55 (2) ◽  
pp. 231-235
Author(s):  
Sergio Grijalva Castillo ◽  
Carlos Calcáneo-Roldán

The recent success of the dark matter model has proven to be an invaluable tool for describing the formation, evolution and stability of galaxies. In this work we study the enhancement function, F , of the gravitational lensing of gravitational waves by galactic dark matter halos and show how this function may be used to distinguish between halo models. In particular we compare an isothermal sphere with an NFW type density distribution, both of which are assumed to be spherically symmetric, and find that our technique clearly distinguishes between the models.


2007 ◽  
Vol 3 (S244) ◽  
pp. 186-195
Author(s):  
Andrea V. Macciò

AbstractWe present recent results concerning the possibility to detect dark satellites around galaxies using QSO strong gravitational lensing. Combining high resolution hydrodynamical simulations of galaxy formation and analytic studies we show that current QSO observations data do not present any evidence for the existence of such satellites. The amount of substructures predicted by CDM within a galaxy size dark matter halo is too low to explain the observed anomalies in the QSO images flux ratio.Nevertheless the fluxes of QSO multiple images can be used to constrain the CDM power spectrum on small scales and test different dark matter candidates. We show that a warm dark matter scenario, with an insufficiently massive particle, fails to reproduce the observational data. Our results suggest a lower limit of few keV (~ 10) for the mass of warm dark matter candidates in the form of a sterile neutrino, in good agreement with previous results coming from Lyman-α forest and Cosmic Microwave Background analysis.


2020 ◽  
Vol 497 (4) ◽  
pp. 4795-4813
Author(s):  
Roger Ianjamasimanana ◽  
Brenda Namumba ◽  
Athanaseus J T Ramaila ◽  
Anna S Saburova ◽  
Gyula I G Józsa ◽  
...  

ABSTRACT We present observations and models of the kinematics and the distribution of the neutral hydrogen (H i) in the isolated dwarf irregular galaxy, Wolf-Lundmark-Melotte (WLM). We observed WLM with the Green Bank Telescope (GBT) and as part of the MeerKAT Early Science Programme, where 16 dishes were available. The H i disc of WLM extends out to a major axis diameter of 30 arcmin (8.5 kpc), and a minor axis diameter of 20 arcmin (5.6 kpc) as measured by the GBT. We use the MeerKAT data to model WLM using the tirific software suite, allowing us to fit different tilted-ring models and select the one that best matches the observation. Our final best-fitting model is a flat disc with a vertical thickness, a constant inclination and dispersion, and a radially varying surface brightness with harmonic distortions. To simulate bar-like motions, we include second-order harmonic distortions in velocity in the tangential and vertical directions. We present a model with only circular motions included and a model with non-circular motions. The latter describes the data better. Overall, the models reproduce the global distribution and the kinematics of the gas, except for some faint emission at the 2σ level. We model the mass distribution of WLM with pseudo-isothermal (ISO) and Navarro–Frenk–White (NFW) dark matter halo models. The NFW and the ISO models fit the derived rotation curves within the formal errors, but with the ISO model giving better reduced chi-square values. The mass distribution in WLM is dominated by dark matter at all radii.


Sign in / Sign up

Export Citation Format

Share Document