scholarly journals Stochastic Star Formation and Magnetic Fields

1990 ◽  
Vol 140 ◽  
pp. 257-258
Author(s):  
J. V. Feitzinger ◽  
E. Harfst ◽  
J. Spicker

The model of selfpropagating star formation uses local processes (200 pc cell size) in the interstellar medium to simulate the large scale cooperative behaviour of spiral structure in galaxies. The dynamic of the model galaxies is taken into account via the mass distribution and the resulting rotation curve; flat rotation curves are used. The interstellar medium is treated as a multiphase medium with appropriate cooling times and density history. The phases are: molecular gas, cool HI gas, warm intercloud and HII gas and hot coronal fountain gas. A detailed gas reshuffeling between the star forming cells in the plane and outside the galactic plane controls the cell content. Two processes working stochastically are incooperated: the building and the decay of molecular clouds and the star forming events in the molecular clouds.

1994 ◽  
Vol 140 ◽  
pp. 168-169
Author(s):  
Tomoharu Oka ◽  
Tetsuo Hasegawa ◽  
Masahiko Hayashi ◽  
Toshihiro Handa ◽  
Sei'ichi Sakamoto

AbstractWe report a large scale mapping observation of the Galactic center region in the CO (J=2-1) line using the Tokyo-NRO 60cm survey telescope. Distribution of the CO (J=2-1) emission in the I-V plane suggests that molecular clouds forms a huge complex (Nuclear Molecular cloud Complex, NMC). Tracers of star formation activities in the last 106-108 years show that star formation has occured in a ring ~ 100 pc in radius. Relative to this Star Forming Ring, the molecular gas is distributed mainly on the positive longitude side. This may indicate that much of the gas in NMC is in transient orbit to fall into the star forming ring or to the nucleus in the near future.


2020 ◽  
Vol 500 (3) ◽  
pp. 3064-3082 ◽  
Author(s):  
F Schuller ◽  
J S Urquhart ◽  
T Csengeri ◽  
D Colombo ◽  
A Duarte-Cabral ◽  
...  

ABSTRACT The SEDIGISM (Structure, Excitation and Dynamics of the Inner Galactic Interstellar Medium) survey used the APEX telescope to map 84 deg2 of the Galactic plane between ℓ = −60° and +31° in several molecular transitions, including 13CO (2 – 1) and C18O (2 – 1), thus probing the moderately dense (∼103 cm−3) component of the interstellar medium. With an angular resolution of 30 arcsec and a typical 1σ sensitivity of 0.8–1.0 K at 0.25 km s−1 velocity resolution, it gives access to a wide range of structures, from individual star-forming clumps to giant molecular clouds and complexes. The coverage includes a good fraction of the first and fourth Galactic quadrants, allowing us to constrain the large-scale distribution of cold molecular gas in the inner Galaxy. In this paper, we provide an updated overview of the full survey and the data reduction procedures used. We also assess the quality of these data and describe the data products that are being made publicly available as part of this First Data Release (DR1). We present integrated maps and position–velocity maps of the molecular gas and use these to investigate the correlation between the molecular gas and the large-scale structural features of the Milky Way such as the spiral arms, Galactic bar and Galactic Centre. We find that approximately 60 per cent of the molecular gas is associated with the spiral arms and these appear as strong intensity peaks in the derived Galactocentric distribution. We also find strong peaks in intensity at specific longitudes that correspond to the Galactic Centre and well-known star-forming complexes, revealing that the 13CO emission is concentrated in a small number of complexes rather than evenly distributed along spiral arms.


Author(s):  
A J Rigby ◽  
N Peretto ◽  
R Adam ◽  
P Ade ◽  
M Anderson ◽  
...  

Abstract Determining the mechanism by which high-mass stars are formed is essential for our understanding of the energy budget and chemical evolution of galaxies. By using the New IRAM KIDs Array 2 (NIKA2) camera on the Institut de Radio Astronomie Millimétrique (IRAM) 30-m telescope, we have conducted high-sensitivity and large-scale mapping of a fraction of the Galactic plane in order to search for signatures of the transition between the high- and low-mass star-forming modes. Here, we present the first results from the Galactic Star Formation with NIKA2 (GASTON) project, a Large Programme at the IRAM 30-m telescope which is mapping ≈2 deg2 of the inner Galactic plane (GP), centred on ℓ = 23${_{.}^{\circ}}$9, b = 0${_{.}^{\circ}}$05, as well as targets in Taurus and Ophiuchus in 1.15 and 2.00 mm continuum wavebands. In this paper we present the first of the GASTON GP data taken, and present initial science results. We conduct an extraction of structures from the 1.15 mm maps using a dendrogram analysis and, by comparison to the compact source catalogues from Herschel survey data, we identify a population of 321 previously-undetected clumps. Approximately 80 per cent of these new clumps are 70 μm-quiet, and may be considered as starless candidates. We find that this new population of clumps are less massive and cooler, on average, than clumps that have already been identified. Further, by classifying the full sample of clumps based upon their infrared-bright fraction – an indicator of evolutionary stage – we find evidence for clump mass growth, supporting models of clump-fed high-mass star formation.


2020 ◽  
Vol 492 (2) ◽  
pp. 2973-2995 ◽  
Author(s):  
Robin G Tress ◽  
Rowan J Smith ◽  
Mattia C Sormani ◽  
Simon C O Glover ◽  
Ralf S Klessen ◽  
...  

ABSTRACT We present here the first of a series of papers aimed at better understanding the evolution and properties of giant molecular clouds (GMCs) in a galactic context. We perform high-resolution, three-dimensional arepo simulations of an interacting galaxy inspired by the well-observed M51 galaxy. Our fiducial simulations include a non-equilibrium, time-dependent, chemical network that follows the evolution of atomic and molecular hydrogen as well as carbon and oxygen self-consistently. Our calculations also treat gas self-gravity and subsequent star formation (described by sink particles), and coupled supernova feedback. In the densest parts of the simulated interstellar medium (ISM), we reach sub-parsec resolution, granting us the ability to resolve individual GMCs and their formation and destruction self-consistently throughout the galaxy. In this initial work, we focus on the general properties of the ISM with a particular focus on the cold star-forming gas. We discuss the role of the interaction with the companion galaxy in generating cold molecular gas and controlling stellar birth. We find that while the interaction drives large-scale gas flows and induces spiral arms in the galaxy, it is of secondary importance in determining gas fractions in the different ISM phases and the overall star formation rate. The behaviour of the gas on small GMC scales instead is mostly controlled by the self-regulating property of the ISM driven by coupled feedback.


1977 ◽  
Vol 75 ◽  
pp. 37-54 ◽  
Author(s):  
P. Thaddeus

To attempt to understand star formation without knowing the physical state of the dense interstellar molecular gas from which stars are made is an almost impossible task. Star formation has developed late as a branch of astrophysics largely for lack of observational data, and in particular, has lagged badly behind the study of the atomic and ionized components of the interstellar gas because spectroscopic techniques which work well at low density have an unfortunate tendency to fail when the density is high. Optical spectroscopy, which has been applied to the interstellar medium for over 70 years, has made little progress in regions of high density because of obscuration, and the same is true a fortiori of spacecraft spectroscopy in the UV; radio 21-cm and recombination line observations, although unhampered by obscuration, are unsatisfactory because the dense condensations are almost entirely molecular in composition.


2020 ◽  
Vol 644 ◽  
pp. A97
Author(s):  
D. Colombo ◽  
S. F. Sanchez ◽  
A. D. Bolatto ◽  
V. Kalinova ◽  
A. Weiß ◽  
...  

Understanding how galaxies cease to form stars represents an outstanding challenge for galaxy evolution theories. This process of “star formation quenching” has been related to various causes, including active galactic nuclei activity, the influence of large-scale dynamics, and the environment in which galaxies live. In this paper, we present the first results from a follow-up of CALIFA survey galaxies with observations of molecular gas obtained with the APEX telescope. Together with the EDGE-CARMA observations, we collected 12CO observations that cover approximately one effective radius in 472 CALIFA galaxies. We observe that the deficit of galaxy star formation with respect to the star formation main sequence (SFMS) increases with the absence of molecular gas and with a reduced efficiency of conversion of molecular gas into stars, which is in line with the results of other integrated studies. However, by dividing the sample into galaxies dominated by star formation and galaxies quenched in their centres (as indicated by the average value of the Hα equivalent width), we find that this deficit increases sharply once a certain level of gas consumption is reached, indicating that different mechanisms drive separation from the SFMS in star-forming and quenched galaxies. Our results indicate that differences in the amount of molecular gas at a fixed stellar mass are the primary drivers for the dispersion in the SFMS, and the most likely explanation for the start of star formation quenching. However, once a galaxy is quenched, changes in star formation efficiency drive how much a retired galaxy differs in its star formation rate from star-forming ones of similar masses. In other words, once a paucity of molecular gas has significantly reduced star formation, changes in the star formation efficiency are what drives a galaxy deeper into the red cloud, hence retiring it.


2020 ◽  
Vol 634 ◽  
pp. A121 ◽  
Author(s):  
Cinthya N. Herrera ◽  
Jérôme Pety ◽  
Annie Hughes ◽  
Sharon E. Meidt ◽  
Kathryn Kreckel ◽  
...  

Context. Cloud-scale surveys of molecular gas reveal the link between giant molecular cloud properties and star formation across a range of galactic environments. Cloud populations in galaxy disks are considered to be representative of the normal star formation process, while galaxy centers tend to harbor denser gas that exhibits more extreme star formation. At high resolution, however, molecular clouds with exceptional gas properties and star formation activity may also be observed in normal disk environments. In this paper we study the brightest cloud traced in CO(2–1) emission in the disk of nearby spiral galaxy NGC 628. Aims. We characterize the properties of the molecular and ionized gas that is spatially coincident with an extremely bright H II region in the context of the NGC 628 galactic environment. We investigate how feedback and large-scale processes influence the properties of the molecular gas in this region. Methods. High-resolution ALMA observations of CO(2–1) and CO(1−0) emission were used to characterize the mass and dynamical state of the “headlight” molecular cloud. The characteristics of this cloud are compared to the typical properties of molecular clouds in NGC 628. A simple large velocity gradient (LVG) analysis incorporating additional ALMA observations of 13CO(1−0), HCO+(1−0), and HCN(1−0) emission was used to constrain the beam-diluted density and temperature of the molecular gas. We analyzed the MUSE spectrum using Starburst99 to characterize the young stellar population associated with the H II region. Results. The unusually bright headlight cloud is massive (1 − 2 × 107 M⊙), with a beam-diluted density of nH2 = 5 × 104 cm−3 based on LVG modeling. It has a low virial parameter, suggesting that the CO emission associated with this cloud may be overluminous due to heating by the H II region. A young (2 − 4 Myr) stellar population with mass 3 × 105 M⊙ is associated. Conclusions. We argue that the headlight cloud is currently being destroyed by feedback from young massive stars. Due to the large mass of the cloud, this phase of the its evolution is long enough for the impact of feedback on the excitation of the gas to be observed. The high mass of the headlight cloud may be related to its location at a spiral co-rotation radius, where gas experiences reduced galactic shear compared to other regions of the disk and receives a sustained inflow of gas that can promote the mass growth of the cloud.


2008 ◽  
Vol 4 (S256) ◽  
pp. 215-226
Author(s):  
Mónica Rubio

AbstractUnderstanding the process of star formation in low metallicity systems is one of the key studies in the early stages of galaxy evolution. The Magellanic Clouds, being the nearest examples of low metallicity systems, allow us to study in detail their star forming regions. As a consequence of their proximity we can resolve the molecular clouds and the regions of star formation individually. Therefore we can increase our knowledge of the interaction of young luminous stars with their environment. We will present results of multiwavelenghts studies of LMC and SMC massive star forming regions, which includes properties of the cold molecular gas, the embedded young population associated with molecular clouds, and the interaction of newly born stars with the surrounding interstellar medium, based on ASTE and APEX submillimeter observations complemented high sensitivity NIR groud based observations and Spitzer results.


2017 ◽  
Vol 608 ◽  
pp. A98 ◽  
Author(s):  
Q. Salomé ◽  
P. Salomé ◽  
M.-A. Miville-Deschênes ◽  
F. Combes ◽  
S. Hamer

NGC 5128 (Centaurus A) is one of the best targets to study AGN feedback in the local Universe. At 13.5 kpc from the galaxy, optical filaments with recent star formation lie along the radio jet direction. This region is a testbed for positive feedback, here through jet-induced star formation. Atacama Pathfinder EXperiment (APEX) observations have revealed strong CO emission in star-forming regions and in regions with no detected tracers of star formation activity. In cases where star formation is observed, this activity appears to be inefficient compared to the Kennicutt-Schmidt relation. We used the Atacama Large Millimeter/submillimeter Array (ALMA) to map the 12CO(1–0) emission all along the filaments of NGC 5128 at a resolution of 1.3′′ ~ 23.8pc. We find that the CO emission is clumpy and is distributed in two main structures: (i) the Horseshoe complex, located outside the HI cloud, where gas is mostly excited by shocks and where no star formation is observed, and (ii) the Vertical filament, located at the edge of the HI shell, which is a region of moderate star formation. We identified 140 molecular clouds using a clustering method applied to the CO data cube. A statistical study reveals that these clouds have very similar physical properties, such as size, velocity dispersion, and mass, as in the inner Milky Way. However, the range of radius available with the present ALMA observations does not enable us to investigate whether or not the clouds follow the Larson relation. The large virial parameter αvir of the clouds suggests that gravity is not dominant and clouds are not gravitationally unstable. Finally, the total energy injection in the northern filaments of Centaurus A is of the same order as in the inner part of the Milky Way. The strong CO emission detected in the northern filaments is an indication that the energy injected by the jet acts positively in the formation of dense molecular gas. The relatively high virial parameter of the molecular clouds suggests that the injected kinetic energy is too strong for star formation to be efficient. This is particularly the case in the horseshoe complex, where the virial parameter is the largest and where strong CO is detected with no associated star formation. This is the first evidence of AGN positive feedback in the sense of forming molecular gas through shocks, associated with low star formation efficiency due to turbulence injection by the interaction with the radio jet.


2019 ◽  
Vol 15 (S352) ◽  
pp. 168-170
Author(s):  
Q. D’Amato ◽  
I. Prandoni ◽  
R. Gilli ◽  
M. Massardi ◽  
E. Liuzzo ◽  
...  

AbstractA large-scale structure has been recently discovered at z = 1.7, around a powerful FRII radio galaxy. Eight Star Forming Galaxies (SFGs) have been discovered within Δ z ≍ 0.0095 and at < 1 Mpc from the FRII, indicating that this is a signpost of a protocluster. Furthermore, a significant X-ray diffuse emission overlapping the Eastern lobe of the FRII has been detected. Protoclusters are the ideal targets to investigate the complex assembly processes leading to the formation of local galaxy clusters. We will exploit new ALMA CO(2-1) observations (PI: R. Gilli) of the entire region around the FRII galaxy to trace the molecular gas content, in order to discover new protocluster members. Coupling these measurements with the multi-wavelength data coverage available for this field, we aim at placing constrains on the physical conditions in which star formation occurs, and ultimately infer the role of the radio jets in triggering it.


Sign in / Sign up

Export Citation Format

Share Document