scholarly journals The Substellar Population in σ Orionis

2003 ◽  
Vol 211 ◽  
pp. 111-118 ◽  
Author(s):  
M. R. Zapatero Osorio ◽  
D. Barrado y Navascués ◽  
V. J. S. Béjar ◽  
R. Rebolo ◽  
J. A. Caballero ◽  
...  

The σ Orionis cluster (~3 Myr, 350 pc) is an ideal site to investigate the early evolution of substellar (brown dwarf and planetary mass) objects. To date, the cluster photometric and spectroscopic sequence of free-floaters is known for a wide mass range from 1 M⊙ down to roughly 3 MJup. The substellar domain covers spectral types that go from mid-M classes to the recently defined “methane” T-types, i.e., surface temperatures between ~3000K and 800 K. We derive a rising initial substellar mass function in the mass interval of 150–5 MJup (dN/dM ~ M-α, with α = 0.9 ± 0.4). We also find evidence for a extension of this mass function toward lower masses down to 2–3 MJup. This indicates that the population of isolated planetary mass objects with masses below the deuterium burning threshold is rather abundant in the cluster.

2019 ◽  
Vol 486 (2) ◽  
pp. 1718-1740 ◽  
Author(s):  
Genaro Suárez ◽  
Juan José Downes ◽  
Carlos Román-Zúñiga ◽  
Miguel Cerviño ◽  
César Briceño ◽  
...  

Abstract The stellar initial mass function (IMF) is an essential input for many astrophysical studies but only in a few cases has it been determined over the whole cluster mass range, limiting the conclusions about its nature. The 25 Orionis group (25 Ori) is an excellent laboratory for investigating the IMF across the entire mass range of the population, from planetary-mass objects to intermediate/high-mass stars. We combine new deep optical photometry with optical and near-infrared data from the literature to select 1687 member candidates covering a 1.1° radius area in 25 Ori. With this sample we derived the 25 Ori system IMF from 0.012 to 13.1 M⊙. This system IMF is well described by a two-segment power law with Γ = −0.74 ± 0.04 for m < 0.4 M⊙ and Γ = 1.50 ± 0.11 for m ≥ 0.4 M⊙. It is also well described over the whole mass range by a tapered power-law function with Γ = 1.10 ± 0.09, mp = 0.31 ± 0.03 and β = 2.11 ± 0.09. The best lognormal representation of the system IMF has mc = 0.31 ± 0.04 and σ = 0.46 ± 0.05 for m < 1 M⊙. This system IMF does not present significant variations with the radii. We compared the resultant system IMF as well as the brown dwarf/star ratio of 0.16 ± 0.03 that we estimated for 25 Ori with that of other stellar regions with diverse conditions and found no significant discrepancies. These results support the idea that general star-formation mechanisms are probably not strongly dependent on environmental conditions. We found that the substellar and stellar objects in 25 Ori do not have any preferential spatial distributions and confirmed that 25 Ori is a gravitationally unbound stellar association.


2021 ◽  
Vol 502 (3) ◽  
pp. 3942-3954
Author(s):  
D Hung ◽  
B C Lemaux ◽  
R R Gal ◽  
A R Tomczak ◽  
L M Lubin ◽  
...  

ABSTRACT We present a new mass function of galaxy clusters and groups using optical/near-infrared (NIR) wavelength spectroscopic and photometric data from the Observations of Redshift Evolution in Large-Scale Environments (ORELSE) survey. At z ∼ 1, cluster mass function studies are rare regardless of wavelength and have never been attempted from an optical/NIR perspective. This work serves as a proof of concept that z ∼ 1 cluster mass functions are achievable without supplemental X-ray or Sunyaev-Zel’dovich data. Measurements of the cluster mass function provide important contraints on cosmological parameters and are complementary to other probes. With ORELSE, a new cluster finding technique based on Voronoi tessellation Monte Carlo (VMC) mapping, and rigorous purity and completeness testing, we have obtained ∼240 galaxy overdensity candidates in the redshift range 0.55 < z < 1.37 at a mass range of 13.6 < log (M/M⊙) < 14.8. This mass range is comparable to existing optical cluster mass function studies for the local universe. Our candidate numbers vary based on the choice of multiple input parameters related to detection and characterization in our cluster finding algorithm, which we incorporated into the mass function analysis through a Monte Carlo scheme. We find cosmological constraints on the matter density, Ωm, and the amplitude of fluctuations, σ8, of $\Omega _{m} = 0.250^{+0.104}_{-0.099}$ and $\sigma _{8} = 1.150^{+0.260}_{-0.163}$. While our Ωm value is close to concordance, our σ8 value is ∼2σ higher because of the inflated observed number densities compared to theoretical mass function models owing to how our survey targeted overdense regions. With Euclid and several other large, unbiased optical surveys on the horizon, VMC mapping will enable optical/NIR cluster cosmology at redshifts much higher than what has been possible before.


2021 ◽  
Vol 503 (1) ◽  
pp. 292-311
Author(s):  
Zeinab Khorrami ◽  
Maud Langlois ◽  
Paul C Clark ◽  
Farrokh Vakili ◽  
Anne S M Buckner ◽  
...  

ABSTRACT We present the sharpest and deepest near-infrared photometric analysis of the core of R136, a newly formed massive star cluster at the centre of the 30 Doradus star-forming region in the Large Magellanic Cloud. We used the extreme adaptive optics of the SPHERE focal instrument implemented on the ESO Very Large Telescope and operated in its IRDIS imaging mode for the second time with longer exposure time in the H and K filters. Our aim was to (i) increase the number of resolved sources in the core of R136, and (ii) to compare with the first epoch to classify the properties of the detected common sources between the two epochs. Within the field of view (FOV) of 10.8″ × 12.1″ ($2.7\,\text {pc}\times 3.0\, \text {pc}$), we detected 1499 sources in both H and K filters, for which 76 per cent of these sources have visual companions closer than 0.2″. The larger number of detected sources enabled us to better sample the mass function (MF). The MF slopes are estimated at ages of 1, 1.5, and 2 Myr, at different radii, and for different mass ranges. The MF slopes for the mass range of 10–300 M⊙ are about 0.3 dex steeper than the mass range of 3–300 M⊙, for the whole FOV and different radii. Comparing the JHK colours of 790 sources common in between the two epochs, 67 per cent of detected sources in the outer region (r > 3″) are not consistent with evolutionary models at 1–2 Myr and with extinctions similar to the average cluster value, suggesting an origin from ongoing star formation within 30 Doradus, unrelated to R136.


2015 ◽  
Vol 800 (1) ◽  
pp. 72 ◽  
Author(s):  
Ingo Thies ◽  
Jan Pflamm-Altenburg ◽  
Pavel Kroupa ◽  
Michael Marks

2013 ◽  
Vol 435 (3) ◽  
pp. 2474-2482 ◽  
Author(s):  
N. Lodieu ◽  
P. D. Dobbie ◽  
N. J. G. Cross ◽  
N. C. Hambly ◽  
M. A. Read ◽  
...  
Keyword(s):  

2012 ◽  
Vol 753 (2) ◽  
pp. 156 ◽  
Author(s):  
J. Davy Kirkpatrick ◽  
Christopher R. Gelino ◽  
Michael C. Cushing ◽  
Gregory N. Mace ◽  
Roger L. Griffith ◽  
...  

2018 ◽  
Vol 614 ◽  
pp. A43 ◽  
Author(s):  
Sami Dib ◽  
Shantanu Basu

We investigate the dependence of a single-generation galactic mass function (SGMF) on variations in the initial stellar mass functions (IMF) of stellar clusters. We show that cluster-to-cluster variations of the IMF lead to a multi-component SGMF where each component in a given mass range can be described by a distinct power-law function. We also show that a dispersion of ≈0.3 M⊙ in the characteristic mass of the IMF, as observed for young Galactic clusters, leads to a low-mass slope of the SGMF that matches the observed Galactic stellar mass function even when the IMFs in the low-mass end of individual clusters are much steeper.


2015 ◽  
pp. 11-23 ◽  
Author(s):  
N. Martinovic

In this paper we present halo statistics analysis of a ?CDM N body cosmological simulation (from first halo formation until z = 0). We study mean major merger rate as a function of time, where for time we consider both per redshift and per Gyr dependence. For latter we find that it scales as the well known power law (1 + z)n for which we obtain n = 2.4. The halo mass function and halo growth function are derived and compared both with analytical and empirical fits. We analyse halo growth through out entire simulation, making it possible to continuously monitor evolution of halo number density within given mass ranges. The halo formation redshift is studied exploring possibility for a new simple preliminary analysis during the simulation run. Visualization of the simulation is portrayed as well. At redshifts z = 0?7 halos from simulation have good statistics for further analysis especially in mass range of 1011 ? 1014 M./h.


2020 ◽  
Vol 492 (3) ◽  
pp. 3602-3621 ◽  
Author(s):  
Y C Joshi ◽  
J Maurya ◽  
A A John ◽  
A Panchal ◽  
S Joshi ◽  
...  

ABSTRACT We present a comprehensive photometric analysis of a young open cluster NGC 1960 (= M36) along with the long-term variability study of this cluster. Based on the kinematic data of Gaia DR2, the membership probabilities of 3871 stars are ascertained in the cluster field among which 262 stars are found to be cluster members. Considering the kinematic and trigonometric measurements of the cluster members, we estimate a mean cluster parallax of 0.86 ± 0.05 mas and mean proper motions of μRA = −0.143 ± 0.008 mas yr−1 and μDec. = −3.395 ± 0.008 mas yr−1. We obtain basic parameters of the cluster such as E(B − V) = 0.24 ± 0.02 mag, log(Age/yr) = 7.44 ± 0.02, and d = 1.17 ± 0.06 kpc. The mass function slope in the cluster for the stars in the mass range of 0.72–7.32 M⊙ is found to be γ = −1.26 ± 0.19. We find that mass segregation is still taking place in the cluster which is yet to be dynamically relaxed. This work also presents first high-precision variability survey in the central 13 arcmin × 13 arcmin region of the cluster. The V-band photometric data accumulated on 43 nights over a period of more than 3 yr reveals 76 variable stars among which 72 are periodic variables. Among them, 59 are short period (P < 1 d) and 13 are long period (P > 1 d). The variable stars have V magnitudes ranging between 9.1 to 19.4 mag and periods between 41 min and 10.74 d. On the basis of their locations in the H–R diagram, periods, and characteristic light curves, 20 periodic variables belong to the cluster are classified as 2 δ-Scuti, 3 γ-Dor, 2 slowly pulsating B stars, 5 rotational variables, 2 non-pulsating B stars, and 6 as miscellaneous variables.


Sign in / Sign up

Export Citation Format

Share Document