scholarly journals Halo statistics analysis within medium volume cosmological N-body simulation

2015 ◽  
pp. 11-23 ◽  
Author(s):  
N. Martinovic

In this paper we present halo statistics analysis of a ?CDM N body cosmological simulation (from first halo formation until z = 0). We study mean major merger rate as a function of time, where for time we consider both per redshift and per Gyr dependence. For latter we find that it scales as the well known power law (1 + z)n for which we obtain n = 2.4. The halo mass function and halo growth function are derived and compared both with analytical and empirical fits. We analyse halo growth through out entire simulation, making it possible to continuously monitor evolution of halo number density within given mass ranges. The halo formation redshift is studied exploring possibility for a new simple preliminary analysis during the simulation run. Visualization of the simulation is portrayed as well. At redshifts z = 0?7 halos from simulation have good statistics for further analysis especially in mass range of 1011 ? 1014 M./h.

Author(s):  
Joseph A O’Leary ◽  
Benjamin P Moster ◽  
Thorsten Naab ◽  
Rachel S Somerville

Abstract We explore the galaxy-galaxy merger rate with the empirical model for galaxy formation, emerge. On average, we find that between 2 per cent and 20 per cent of massive galaxies (log10(m*/M⊙) ≥ 10.3) will experience a major merger per Gyr. Our model predicts galaxy merger rates that do not scale as a power-law with redshift when selected by descendant stellar mass, and exhibit a clear stellar mass and mass-ratio dependence. Specifically, major mergers are more frequent at high masses and at low redshift. We show mergers are significant for the stellar mass growth of galaxies log10(m*/M⊙) ≳ 11.0. For the most massive galaxies major mergers dominate the accreted mass fraction, contributing as much as 90 per cent of the total accreted stellar mass. We reinforce that these phenomena are a direct result of the stellar-to-halo mass relation, which results in massive galaxies having a higher likelihood of experiencing major mergers than low mass galaxies. Our model produces a galaxy pair fraction consistent with recent observations, exhibiting a form best described by a power-law exponential function. Translating these pair fractions into merger rates results in an inaccurate prediction compared to the model intrinsic values when using published observation timescales. We find the pair fraction can be well mapped to the intrinsic merger rate by adopting an observation timescale that decreases linearly with redshift as Tobs = −0.36(1 + z) + 2.39 [Gyr], assuming all observed pairs merge by z = 0.


2015 ◽  
Vol 11 (A29B) ◽  
pp. 696-698
Author(s):  
Nir Mandelker ◽  
Avishai Dekel

AbstractAccording to the ΛCDM paradigm of cosmology, galaxies form at the centers of dark matter (DM) halos. While galaxy formation involves complex baryonic physics, the formation of DM halos is governed solely by gravity and cosmology. As a result, many of their properties exhibit a near scale-free behaviour, self-similar in either halo mass, cosmic time or both. This is especially true in the Einstein-de Sitter (EdS) regime, valid at redshifts z ≳ 1, when cosmological scaling relations become particularly simple, and in the narrow mass range of normal galaxies, where the fluctuation power spectrum can be approximated by a power law. Since many galaxy properties are strongly correlated with halo mass, they tend to exhibit a self-similar behaviour as well. A partial list of self-similar properties include the mass function of DM halos, the structure of the cosmic web, the accretion/merger rate of matter onto halos, the density profiles of DM halos and their angular momentum, which eventually determines the galaxy structure. We briefly review these below, and comment on how they can be used in conjunction with simple toy models to gain insight into galaxy formation.


2019 ◽  
Vol 486 (2) ◽  
pp. 1718-1740 ◽  
Author(s):  
Genaro Suárez ◽  
Juan José Downes ◽  
Carlos Román-Zúñiga ◽  
Miguel Cerviño ◽  
César Briceño ◽  
...  

Abstract The stellar initial mass function (IMF) is an essential input for many astrophysical studies but only in a few cases has it been determined over the whole cluster mass range, limiting the conclusions about its nature. The 25 Orionis group (25 Ori) is an excellent laboratory for investigating the IMF across the entire mass range of the population, from planetary-mass objects to intermediate/high-mass stars. We combine new deep optical photometry with optical and near-infrared data from the literature to select 1687 member candidates covering a 1.1° radius area in 25 Ori. With this sample we derived the 25 Ori system IMF from 0.012 to 13.1 M⊙. This system IMF is well described by a two-segment power law with Γ = −0.74 ± 0.04 for m < 0.4 M⊙ and Γ = 1.50 ± 0.11 for m ≥ 0.4 M⊙. It is also well described over the whole mass range by a tapered power-law function with Γ = 1.10 ± 0.09, mp = 0.31 ± 0.03 and β = 2.11 ± 0.09. The best lognormal representation of the system IMF has mc = 0.31 ± 0.04 and σ = 0.46 ± 0.05 for m < 1 M⊙. This system IMF does not present significant variations with the radii. We compared the resultant system IMF as well as the brown dwarf/star ratio of 0.16 ± 0.03 that we estimated for 25 Ori with that of other stellar regions with diverse conditions and found no significant discrepancies. These results support the idea that general star-formation mechanisms are probably not strongly dependent on environmental conditions. We found that the substellar and stellar objects in 25 Ori do not have any preferential spatial distributions and confirmed that 25 Ori is a gravitationally unbound stellar association.


2009 ◽  
Vol 5 (S262) ◽  
pp. 209-212
Author(s):  
Carlos López-Sanjuan ◽  
Marc Balcells ◽  
Pablo G. Pérez-González ◽  
Guillermo Barro ◽  
César Enrique García-Dabó ◽  
...  

AbstractWe study the evolution of the red sequence and the blue cloud since z ~ 1 to present in GOODS-S field for MB ≤ −20 and M* ≥ 1010M⊙ selected galaxies. We segregate the galaxies in early-type galaxies (ET, E/S0/Sa), and late-type galaxies (LT, Sb-Irr) by their position in the concentration-asymmetry plane, while in passive and star-forming by their rest-frame NUV – R color and their 24μm properties.We find that red sequence (passive early types) comoving number density rise with cosmic time in both samples, while blue cloud (star-forming late types) number density descent in luminosity-selected samples and increase in mass-selected sample. We also find a third population that comprises star-forming early-type galaxies.Comparing the observed evolution with the disk-disk (wet) major merger rate in GOODS-S, we infer that only ~20% of M* ≥ 1010M⊙ red sequence galaxies appeared since z = 1 can be explained by this kind of mergers, suggesting that minor mergers and secular evolution are the main processes in the red sequence evolution of M* ≥ 1010M⊙ galaxies since z ~ 1.


2015 ◽  
Vol 11 (A29B) ◽  
pp. 742-742
Author(s):  
Tomoaki Ishiyama

AbstractThe smallest dark matter halos are formed first in the early universe (e.g., Hofmann et al. 2001; Berezinsky et al. 2003; Ishiyama et al. 2010). We present results of very large cosmological N-body simulations of the hierarchical formation and evolution of halos over a wide mass range, beginning from the formation of the smallest halos. In the largest simulation, the motions of 40963 particles in comoving boxes of side lengths 400 pc and 200 pc were followed. The particle masses were 3.4 × 10−11M⊙ and 4.3 × 10−12M⊙, ensuring that halos at the cutoff scale were represented by 30,000 and 230,000 particles, respectively. We found that the central density cusp is much steeper in these halos than in larger halos (dwarf-galaxy-sized to cluster-sized halos), and scales as ρ ∝ r-(1.5–1.3). The cusp slope gradually becomes shallower as the halo mass increases.The slope of halos 50 times more massive than the smallest halo is approximately −1.3. No strong correlation exists between inner slope and the collapse epoch. The cusp slope of halos above the cutoff scale seems to be reduced primarily due to major merger processes. The concentration, estimated at the present universe, is predicted to be 60–70, consistent with theoretical models and earlier simulations, and ruling out simple power law mass-concentration relations. Such halos could still exist in the present universe with the same steep density profiles. Strongly depending on the subhalo mass function and the adopted concentration model, the steeper inner cusps of halos near the cutoff scale enhance the annihilation luminosity of a Milky Way sized halo between 12 to 67 (Ishiyama 2014).


2021 ◽  
Vol 502 (3) ◽  
pp. 3942-3954
Author(s):  
D Hung ◽  
B C Lemaux ◽  
R R Gal ◽  
A R Tomczak ◽  
L M Lubin ◽  
...  

ABSTRACT We present a new mass function of galaxy clusters and groups using optical/near-infrared (NIR) wavelength spectroscopic and photometric data from the Observations of Redshift Evolution in Large-Scale Environments (ORELSE) survey. At z ∼ 1, cluster mass function studies are rare regardless of wavelength and have never been attempted from an optical/NIR perspective. This work serves as a proof of concept that z ∼ 1 cluster mass functions are achievable without supplemental X-ray or Sunyaev-Zel’dovich data. Measurements of the cluster mass function provide important contraints on cosmological parameters and are complementary to other probes. With ORELSE, a new cluster finding technique based on Voronoi tessellation Monte Carlo (VMC) mapping, and rigorous purity and completeness testing, we have obtained ∼240 galaxy overdensity candidates in the redshift range 0.55 < z < 1.37 at a mass range of 13.6 < log (M/M⊙) < 14.8. This mass range is comparable to existing optical cluster mass function studies for the local universe. Our candidate numbers vary based on the choice of multiple input parameters related to detection and characterization in our cluster finding algorithm, which we incorporated into the mass function analysis through a Monte Carlo scheme. We find cosmological constraints on the matter density, Ωm, and the amplitude of fluctuations, σ8, of $\Omega _{m} = 0.250^{+0.104}_{-0.099}$ and $\sigma _{8} = 1.150^{+0.260}_{-0.163}$. While our Ωm value is close to concordance, our σ8 value is ∼2σ higher because of the inflated observed number densities compared to theoretical mass function models owing to how our survey targeted overdense regions. With Euclid and several other large, unbiased optical surveys on the horizon, VMC mapping will enable optical/NIR cluster cosmology at redshifts much higher than what has been possible before.


2020 ◽  
Vol 500 (2) ◽  
pp. 1697-1707
Author(s):  
Paul C Clark ◽  
Anthony P Whitworth

ABSTRACT We propose a new model for the evolution of a star cluster’s system mass function (SMF). The model involves both turbulent fragmentation and competitive accretion. Turbulent fragmentation creates low-mass seed proto-systems (i.e. single and multiple protostars). Some of these low-mass seed proto-systems then grow by competitive accretion to produce the high-mass power-law tail of the SMF. Turbulent fragmentation is relatively inefficient, in the sense that the creation of low-mass seed proto-systems only consumes a fraction, ${\sim }23{{\ \rm per\ cent}}$ (at most ${\sim }50{{\ \rm per\ cent}}$), of the mass available for star formation. The remaining mass is consumed by competitive accretion. Provided the accretion rate on to a proto-system is approximately proportional to its mass (dm/dt ∝ m), the SMF develops a power-law tail at high masses with the Salpeter slope (∼−2.3). If the rate of supply of mass accelerates, the rate of proto-system formation also accelerates, as appears to be observed in many clusters. However, even if the rate of supply of mass decreases, or ceases and then resumes, the SMF evolves homologously, retaining the same overall shape, and the high-mass power-law tail simply extends to ever higher masses until the supply of gas runs out completely. The Chabrier SMF can be reproduced very accurately if the seed proto-systems have an approximately lognormal mass distribution with median mass ${\sim } 0.11 \, {\rm M}_{\odot }$ and logarithmic standard deviation $\sigma _{\log _{10}({M/M}_\odot)}\sim 0.47$).


2021 ◽  
Vol 503 (1) ◽  
pp. 292-311
Author(s):  
Zeinab Khorrami ◽  
Maud Langlois ◽  
Paul C Clark ◽  
Farrokh Vakili ◽  
Anne S M Buckner ◽  
...  

ABSTRACT We present the sharpest and deepest near-infrared photometric analysis of the core of R136, a newly formed massive star cluster at the centre of the 30 Doradus star-forming region in the Large Magellanic Cloud. We used the extreme adaptive optics of the SPHERE focal instrument implemented on the ESO Very Large Telescope and operated in its IRDIS imaging mode for the second time with longer exposure time in the H and K filters. Our aim was to (i) increase the number of resolved sources in the core of R136, and (ii) to compare with the first epoch to classify the properties of the detected common sources between the two epochs. Within the field of view (FOV) of 10.8″ × 12.1″ ($2.7\,\text {pc}\times 3.0\, \text {pc}$), we detected 1499 sources in both H and K filters, for which 76 per cent of these sources have visual companions closer than 0.2″. The larger number of detected sources enabled us to better sample the mass function (MF). The MF slopes are estimated at ages of 1, 1.5, and 2 Myr, at different radii, and for different mass ranges. The MF slopes for the mass range of 10–300 M⊙ are about 0.3 dex steeper than the mass range of 3–300 M⊙, for the whole FOV and different radii. Comparing the JHK colours of 790 sources common in between the two epochs, 67 per cent of detected sources in the outer region (r > 3″) are not consistent with evolutionary models at 1–2 Myr and with extinctions similar to the average cluster value, suggesting an origin from ongoing star formation within 30 Doradus, unrelated to R136.


2004 ◽  
Vol 13 (07) ◽  
pp. 1345-1349 ◽  
Author(s):  
JOSÉ A. S. LIMA ◽  
LUCIO MARASSI

A generalization of the Press–Schechter (PS) formalism yielding the mass function of bound structures in the Universe is given. The extended formula is based on a power law distribution which encompasses the Gaussian PS formula as a special case. The new method keeps the original analytical simplicity of the PS approach and also solves naturally its main difficult (the missing factor 2) for a given value of the free parameter.


2000 ◽  
Vol 195 ◽  
pp. 417-418
Author(s):  
S. Nitta

The aim of this work is to demonstrate the properties of the magnetospheric model around Kerr black holes, so-called the “flywheel” (rotation powered) model. The fly-wheel engine of the BH accretion disk system is applied to the statistics of QSOs/AGNs. Nitta, Takahashi, & Tomimatsu clarified the individual evolution of the Kerr black-hole fly-wheel engine, which is parameterized by black-hole mass, initial Kerr parameter, magnetic field near the horizon, and a dimensionless small parameter. We impose a statistical model for the initial mass function of an ensemble of black holes using the Press-Schechter formalism. With the help of additional assumptions, we can discuss the evolution of the luminosity function and the spatial number density (population) of QSOs/AGNs. The result explains well the decrease of very bright QSOs and decrease of population after z ~ 2.


Sign in / Sign up

Export Citation Format

Share Document