scholarly journals Migration of Celestial Bodies in the Solar System

2004 ◽  
Vol 202 ◽  
pp. 190-192 ◽  
Author(s):  
S. I. Ipatov

Migration of planetesimals and embryos of forming planets was investigated on the basis of computer runs of the evolution of disks of gravitating bodies orbiting the Sun. Our results obtained earlier with the use of the spheres' method are close to the results obtained recently by other authors by numerical integration. Due to the interaction with migrating planetesimals, the embryos of Uranus and Neptune, which acquired most of their masses near the orbit of Saturn, could migrate to the present distances from the Sun moving all time in nearly circular orbits. Each of the terrestrial planets incorporated planetesimals from all feeding zones of these planets.

2020 ◽  
Vol 6 (42) ◽  
pp. eaay2724
Author(s):  
Alexander N. Krot ◽  
Kazuhide Nagashima ◽  
James R. Lyons ◽  
Jeong-Eun Lee ◽  
Martin Bizzarro

The Sun is 16O-enriched (Δ17O = −28.4 ± 3.6‰) relative to the terrestrial planets, asteroids, and chondrules (−7‰ < Δ17O < 3‰). Ca,Al-rich inclusions (CAIs), the oldest Solar System solids, approach the Sun’s Δ17O. Ultraviolet CO self-shielding resulting in formation of 16O-rich CO and 17,18O-enriched water is the currently favored mechanism invoked to explain the observed range of Δ17O. However, the location of CO self-shielding (molecular cloud or protoplanetary disk) remains unknown. Here we show that CAIs with predominantly low (26Al/27Al)0, <5 × 10−6, exhibit a large inter-CAI range of Δ17O, from −40‰ to −5‰. In contrast, CAIs with the canonical (26Al/27Al)0 of ~5 × 10−5 from unmetamorphosed carbonaceous chondrites have a limited range of Δ17O, −24 ± 2‰. Because CAIs with low (26Al/27Al)0 are thought to have predated the canonical CAIs and formed within first 10,000–20,000 years of the Solar System evolution, these observations suggest oxygen isotopic heterogeneity in the early solar system was inherited from the protosolar molecular cloud.


Elements ◽  
2017 ◽  
Vol 13 (4) ◽  
pp. 231-236 ◽  
Author(s):  
Charles K. Shearer ◽  
Steven B. Simon

The behavior of boron during the early evolution of the Solar System provides the foundation for how boron reservoirs become established in terrestrial planets. The abundance of boron in the Sun is depleted relative to adjacent light elements, a result of thermal nuclear reactions that destroy boron atoms. Extant boron was primarily generated by spallation reactions. In the initial materials condensing from the solar nebula, boron was predominantly incorporated into plagioclase. Boron abundances in the terrestrial planets exhibit variability, as illustrated by B/Be. During planetary formation and differentiation, boron is redistributed by fluids at low temperature and during crystallization of magma oceans at high temperature.


Conditions that could have applied in the environments of the major planets when they were forming make it possible that the present icy mantles of the larger satellites were then oceans and vapour atmospheres encasing silicate—ferrous cores. The major constituents are explored by comparison with the present atmospheres of the terrestrial planets. It is further suggested that the primary condensations during the formation of the Solar System were the Sun and the major planets, and that the terrestrial planets and satellites were a secondary formation. Some observational data are offered in support of the arguments and future tests are suggested.


2015 ◽  
Vol 112 (14) ◽  
pp. 4214-4217 ◽  
Author(s):  
Konstantin Batygin ◽  
Greg Laughlin

The statistics of extrasolar planetary systems indicate that the default mode of planet formation generates planets with orbital periods shorter than 100 days and masses substantially exceeding that of the Earth. When viewed in this context, the Solar System is unusual. Here, we present simulations which show that a popular formation scenario for Jupiter and Saturn, in which Jupiter migrates inward from a > 5 astronomical units (AU) to a ≈ 1.5 AU before reversing direction, can explain the low overall mass of the Solar System’s terrestrial planets, as well as the absence of planets with a < 0.4 AU. Jupiter’s inward migration entrained s ≳ 10−100 km planetesimals into low-order mean motion resonances, shepherding and exciting their orbits. The resulting collisional cascade generated a planetesimal disk that, evolving under gas drag, would have driven any preexisting short-period planets into the Sun. In this scenario, the Solar System’s terrestrial planets formed from gas-starved mass-depleted debris that remained after the primary period of dynamical evolution.


Author(s):  
Mario Trieloff

This is an advance summary of a forthcoming article in the Oxford Encyclopedia of Planetary Science. Please check back later for the full article.Although the second most abundant element in the cosmos is helium, noble gases are also called rare gases. The reason is that they are not abundant on terrestrial planets like our Earth, which is characterized by orders of magnitude depletion of—particularly light—noble gases when compared to the cosmic element abundance pattern. Indeed, such geochemical depletion and enrichment processes make noble gases so versatile concerning planetary formation and evolution: When our solar system formed, the first small grains started to adsorb small amounts of noble gases from the protosolar nebula, resulting in depletion of light He and Ne when compared to heavy noble gases Ar, Kr, and Xe: the so-called planetary type abundance pattern. Subsequent flash heating of the first small mm to cm-sized objects (chondrules and calcium, aluminum rich inclusions) resulted in further depletion, as well as heating—and occasionally differentiation—on small planetesimals, which were precursors of larger planets and which we still find in the asteroid belt today from where we get rocky fragments in form of meteorites. In most primitive meteorites, we even can find tiny rare grains that are older than our solar system and condensed billions of years ago in circumstellar atmospheres of, for example, red giant stars. These grains are characterized by nucleosynthetic anomalies and particularly identified by noble gases, for example, so-called s-process xenon.While planetesimals acquired a depleted noble gas component strongly fractionated in favor of heavy noble gases, the sun and also gas giants like Jupiter attracted a much larger amount of gas from the protosolar nebula by gravitational capture. This resulted in a cosmic or “solar type” abundance pattern, containing the full complement of light noble gases. Contrary to Jupiter or the sun, terrestrial planets accreted from planetesimals with only minor contributions from the protosolar nebula, which explains their high degree of depletion and basically “planetary” elemental abundance pattern. Indeed this depletion enables another tool to be applied in noble gas geo- and cosmochemistry: ingrowth of radiogenic nuclides. Due to heavy depletion of primordial nuclides like 36Ar and 130Xe, radiogenic ingrowth of 40Ar by 40K decay, 129Xe by 129I decay, or fission Xe from 238U or 244Pu decay are precisely measurable, and allow insight in the chronology of fractionation of lithophile parent nuclides and atmophile noble gas daughters, mainly caused by mantle degassing and formation of the atmosphere.Already the dominance of 40Ar in the terrestrial atmosphere allowed C. F v. Weizsäcker to conclude that most of the terrestrial atmosphere originated by degassing of the solid Earth, which is an ongoing process today at mid ocean ridges, where primordial helium leaves the lithosphere for the first time. Mantle degassing was much more massive in the past; in fact, most of the terrestrial atmosphere formed during the first 100 million years of Earth´s history, and was completed at about the same time when the terrestrial core formed and accretion was terminated by a giant impact that also formed our moon. However, before that time, somehow also tiny amounts of solar noble gases managed to find their way into the mantle, presumably by solar wind irradiation of small planetesimals or dust accreting to Earth. While the moon-forming impact likely dissipated the primordial atmosphere, today´s atmosphere originated by mantle degassing and a late veneer with asteroidal and possibly cometary contributions. As other atmophile elements behave similar to noble gases, they also trace the origin of major volatiles on Earth, for example, water, nitrogen, sulfur, and carbon.


1972 ◽  
Vol 45 ◽  
pp. 401-408 ◽  
Author(s):  
F. L. Whipple

The evolution of the solar system is surveyed, it being presumed that the Sun, Jupiter, and Saturn formed rather quickly and essentially with the composition of the original collapsing cloud of dust and gas. Just as the refractory material of the cloud is considered to have formed into planetesimals, from which the terrestrial planets collected, so is the icy material supposed to have produced comets, or cometesimals, from which Uranus and Neptune (and to some extent Saturn and Jupiter) were built up. The presence of a residual belt of comets beyond the orbit of Neptune is discussed, analysis of possible perturbative effects on P/Halley indicating that the total mass of such a belt at 50 AU from the Sun could not now exceed the mass of the Earth.


1974 ◽  
Vol 3 ◽  
pp. 475-481
Author(s):  
H. C. Urey

Objects of the solar system, in addition to the Sun, can be classified into four groups -the planets, objects of lunar mass, smaller objects of variable mass and the comets.If the solar proportion of gases relative to non-volatile compounds of the variety in the terrestrial planets, namely about 300 times the mass of these elements, were added to the terrestrial planets, they would have masses comparable to those of the major planets. Mercury is low in mass but has a high density, indicating that it has lost several times its mass of silicate materials relative to high density metallic iron. If this were restored and then the component of gases were added, it would also fall into the group rather naturally. Mars appears to be rather small. Uranus and Neptune have rather high densities indicating some loss of gases, probably hydrogen and helium. When we attempt to estimate the mass of primitive solar material from which the planets were evolved, we conclude that they evolved from very similar masses. Later, I shall argue that the process was a very inefficient one.


1997 ◽  
Vol 165 ◽  
pp. 245-250
Author(s):  
G.I. Eroshkin ◽  
N.I. Glebova ◽  
M.A. Fursenko ◽  
A. A. Trubitsina

The construction of long-term numerical ephemerides of the Sun, major planets and the Moon is based essentially on the high-precision numerical solution of the problem of the motion of these bodies and polynomial representation of the data. The basis of each ephemeris is a mathematical model describing all the main features of the motions of the Sun, major planets, and Moon. Such mathematical model was first formulated for the ephemerides DE/LE and was widely applied with some variations for several national ephemeris construction. The model of the AE95 ephemeris is based on the DE200/LE200 ephemeris mathematical model. Being an ephemeris of a specific character, the AE95 ephemeris is a basis for a special edition “Supplement to the Astronomical Yearbook for 1996–2000”, issued by the Institute of the Theoretical Astronomy (ITA) (Glebova et al., 1995). This ephemeris covering the years 1960–2010 is not a long ephemeris in itself but the main principles of its construction allow one to elaborate the long-term ephemeris on an IBM PC-compatible computer. A high-precision long-term numerical integration of the motion of major bodies of the Solar System demands a choice of convenient variables and a high-precision method of the numerical integration, taking into consideration the specific features of both the problem to be solved and the computer to be utilized.


1803 ◽  
Vol 93 ◽  
pp. 339-382 ◽  

In the Remarks on the Construction of the Heavens, contained in my last Paper on this subject, I have divided the various objects which astronomy has hitherto brought to our view, into twelve classes. The first comprehends insulated stars. As the solar system presents us with all the particulars that may be known, respecting the arrangement of the various su­bordinate celestial bodies that are under the influence of stars which I have called insulated, such as planets and satellites, asteroids and comets, I shall here say but little on that subject. It will, however, not be amiss to remark, that the late addition of two new celestial bodies, has undoubtedly enlarged our know­ledge of the construction of the system of insulated stars. Whatever may be the nature of these two new bodies, we know that they move in regular elliptical orbits round the sun. It is not in the least material whether we call them asteroids, as I have proposed; or planetoids, as an eminent astronomer, in a letter to me, suggested; or whether we admit them at once into the class of our old seven large planets. In the latter case, however, we must recollect, that if we would speak with precision, they should be called very small, and exzodiacal; for, the great inclination of the orbit of one of them to the ecliptic, amounting to 35 degrees, is certainly remarkable. That of the other is also considerable; its latitude, the last time I saw it, being more than 15 degrees north. These circumstances, added to their smallness, show that there exists a greater variety of arrange­ment and size among the bodies which our sun holds in subor­dination, than we had formerly been acquainted with, and extend our knowledge of the construction of the solar, or insulated sidereal system. It will not be required that I should add any thing farther on the subject of this first article of my clas­sification; I may therefore immediately go to the second, which treats of binary sidereal systems, or real double stars.


Author(s):  
AslıPınar Tan

Based on measured astronomical position data of heavenly objects in the Solar System and other planetary systems, all bodies in space seem to move in some kind of elliptical motion with respect to each other. According to Kepler&rsquo;s 1st Law, &ldquo;orbit of a planet with respect to the Sun is an ellipse, with the Sun at one of the two foci.&rdquo; Orbit of the Moon with respect to Earth is also distinctly elliptical, but this ellipse has a varying eccentricity as the Moon comes closer to and goes farther away from the Earth in a harmonic style along a full cycle of this ellipse. In this paper, our research results are summarized, where it is first mathematically shown that the &ldquo;distance between points around any two different circles in three dimensional space&rdquo; is equivalent to the &ldquo;distance of points around a vector ellipse to another fixed or moving point, as in two dimensional space&rdquo;. What is done is equivalent to showing that bodies moving on two different circular orbits in space vector wise behave as if moving on an elliptical path with respect to each other, and virtually seeing each other as positioned at an instantaneously stationary point in space on their relative ecliptic plane, whether they are moving with the same angular velocity, or different but fixed angular velocities, or even with different and changing angular velocities with respect to their own centers of revolution. This mathematical revelation has the potential to lead to far reaching discoveries in physics, enabling more insight into forces of nature, with a formulation of a new fundamental model regarding the motions of bodies in the Universe, including the Sun, Planets, and Satellites in the Solar System and elsewhere, as well as at particle and subatomic level. Based on the demonstrated mathematical analysis, as they exhibit almost fixed elliptic orbits relative to one another over time, the assertion is made that the Sun, the Earth, and the Moon must each be revolving in their individual circular orbits of revolution in space. With this expectation, individual orbital parameters of the Sun, the Earth, and the Moon are calculated based on observed Earth to Sun and Earth to Moon distance data, also using analytical methods developed as part of this research to an approximation. This calculation and analysis process have revealed additional results aligned with observation, and this also supports our assertion that the Sun, the Earth, and the Moon must actually be revolving in individual circular orbits.


Sign in / Sign up

Export Citation Format

Share Document