scholarly journals Diameter and Proper Motion of Sgr A∗

1996 ◽  
Vol 169 ◽  
pp. 193-198
Author(s):  
D. C. Backer

The best hypothesis for the energy source of the compact, nonthermal radio source in the center of our galaxy, Sagittarius A∗ (Sgr A∗), is accretion onto a massive black hole from winds emanating from nearby luminous stars. The hole mass, accretion rate, and ultimate fate of accreted matter are uncertain. In this report I give a summary of recent critical observations. The interpretation of these results supports this general hypothesis, and begins to place constraints on model parameters. If so, then Sgr A∗ is a miniature version of extragalactic AGNs in a quiescent state.

1998 ◽  
Vol 184 ◽  
pp. 437-438
Author(s):  
Zhi-Qiang Shen ◽  
K. Y. Lo ◽  
Jun-Hui Zhao ◽  
Paul Ho

Sgr A∗, the enigmatic compact nonthermal radio source located at the center of the Galaxy for many years has been considered as the signpost of a massive black hole (Rees 1982; Lo 1986; Falcke et al. 1997). Its properties are unique in the Galaxy, but it resembles other nuclear radio sources (Lo 1993). Efforts to delineate the source structure of Sgr A∗, in order to constraint the nature of the underlying energy source, have been ongoing since 1975 (Lo et al. 1975).


2019 ◽  
Vol 621 ◽  
pp. A119 ◽  
Author(s):  
Christiaan D. Brinkerink ◽  
Cornelia Müller ◽  
Heino D. Falcke ◽  
Sara Issaoun ◽  
Kazunori Akiyama ◽  
...  

Context. The compact radio source Sagittarius A∗ (Sgr A∗) in the Galactic centre is the primary supermassive black hole candidate. General relativistic magnetohydrodynamical (GRMHD) simulations of the accretion flow around Sgr A∗ predict the presence of sub-structure at observing wavelengths of ∼3 mm and below (frequencies of 86 GHz and above). For very long baseline interferometry (VLBI) observations of Sgr A∗ at this frequency the blurring effect of interstellar scattering becomes sub-dominant, and arrays such as the high sensitivity array (HSA) and the global mm-VLBI array (GMVA) are now capable of resolving potential sub-structure in the source. Such investigations help to improve our understanding of the emission geometry of the mm-wave emission of Sgr A∗, which is crucial for constraining theoretical models and for providing a background to interpret 1 mm VLBI data from the Event Horizon Telescope (EHT). Aims. Following the closure phase analysis in our first paper, which indicates asymmetry in the 3 mm emission of Sgr A∗, here we have used the full visibility information to check for possible sub-structure. We extracted source size information from closure amplitude analysis, and investigate how this constrains a combined fit of the size-frequency relation and the scattering law for Sgr A∗. Methods. We performed high-sensitivity VLBI observations of Sgr A∗ at 3 mm using the Very Long Baseline Array (VLBA) and the Large Millimeter Telescope (LMT) in Mexico on two consecutive days in May 2015, with the second epoch including the Greenbank Telescope (GBT). Results. We confirm the asymmetry for the experiment including GBT. Modelling the emission with an elliptical Gaussian results in significant residual flux of ∼10 mJy in south-eastern direction. The analysis of closure amplitudes allows us to precisely constrain the major and minor axis size of the main emission component. We discuss systematic effects which need to be taken into account. We consider our results in the context of the existing body of size measurements over a range of observing frequencies and investigate how well-constrained the size-frequency relation is by performing a simultaneous fit to the scattering law and the size-frequency relation. Conclusions. We find an overall source geometry that matches previous findings very closely, showing a deviation in fitted model parameters less than 3% over a time scale of weeks and suggesting a highly stable global source geometry over time. The reported sub-structure in the 3 mm emission of Sgr A∗ is consistent with theoretical expectations of refractive noise on long baselines. However, comparing our findings with recent results from 1 mm and 7 mm VLBI observations, which also show evidence for east-west asymmetry, we cannot exclude an intrinsic origin. Confirmation of persistent intrinsic substructure will require further VLBI observations spread out over multiple epochs.


2013 ◽  
Vol 9 (S303) ◽  
pp. 254-263
Author(s):  
S. Gillessen ◽  
R. Genzel ◽  
T. K. Fritz ◽  
F. Eisenhauer ◽  
O. Pfuhl ◽  
...  

AbstractIn 2011, we discovered a compact gas cloud (“G2”) with roughly three Earth masses that is falling on a near-radial orbit toward the massive black hole in the Galactic center. The orbit is well constrained and pericenter passage is predicted for early 2014. Our data beautifully show that G2 gets tidally sheared apart due to the massive black hole's force. During the next months, we expect that in addition to the tidal effects, hydrodynamics get important, when G2 collides with the hot ambient gas around Sgr A*. Simulations show that ultimately, the cloud's material might fall into the massive black hole. Predictions for the accretion rate and luminosity evolution, however, are very difficult due to the many unknowns. Nevertheless, this might be a unique opportunity in the next years to observe how gas feeds a massive black hole in a galactic nucleus.


2020 ◽  
Vol 499 (3) ◽  
pp. 3178-3192
Author(s):  
D Yoon ◽  
K Chatterjee ◽  
S B Markoff ◽  
D van Eijnatten ◽  
Z Younsi ◽  
...  

ABSTRACT The candidate supermassive black hole in the Galactic Centre, Sagittarius A* (Sgr A*), is known to be fed by a radiatively inefficient accretion flow (RIAF), inferred by its low accretion rate. Consequently, radiative cooling has in general been overlooked in the study of Sgr A*. However, the radiative properties of the plasma in RIAFs are poorly understood. In this work, using full 3D general–relativistic magnetohydrodynamical simulations, we study the impact of radiative cooling on the dynamical evolution of the accreting plasma, presenting spectral energy distributions and synthetic sub-millimetre images generated from the accretion flow around Sgr A*. These simulations solve the approximated equations for radiative cooling processes self-consistently, including synchrotron, bremsstrahlung, and inverse Compton processes. We find that radiative cooling plays an increasingly important role in the dynamics of the accretion flow as the accretion rate increases: the mid-plane density grows and the infalling gas is less turbulent as cooling becomes stronger. The changes in the dynamical evolution become important when the accretion rate is larger than $10^{-8}\, M_{\odot }~{\rm yr}^{-1}$ ($\gtrsim 10^{-7} \dot{M}_{\rm Edd}$, where $\dot{M}_{\rm Edd}$ is the Eddington accretion rate). The resulting spectra in the cooled models also differ from those in the non-cooled models: the overall flux, including the peak values at the sub-mm and the far-UV, is slightly lower as a consequence of a decrease in the electron temperature. Our results suggest that radiative cooling should be carefully taken into account in modelling Sgr A* and other low-luminosity active galactic nuclei that have a mass accretion rate of $\dot{M} \gt 10^{-7}\, \dot{M}_{\rm Edd}$.


2006 ◽  
Vol 2 (S238) ◽  
pp. 195-200
Author(s):  
M. R. Morris ◽  
S. D. Hornstein ◽  
A. M. Ghez ◽  
J. R. Lu ◽  
K. Matthews ◽  
...  

AbstractObservations of Sgr A* over the past 4 years with the Keck Telescope in the near-infrared, coupled with millimeter and submillimeter observations, show that the 3.7×106M⊙Galactic Black Hole, Sagittarius A*, displays continuous variability at all these wavelengths, with the variability power concentrated on characteristic time scales of a few hours, and with a variability fraction that increases with wavelength. We review the observations indicating that the few-hour time scale for variability is reproduced at all accessible wavelengths. Interpreted as a dynamical time, this time scale corresponds to a radial distance of 2 AU, or ∼25 Schwarzschild radii. Searches for quasi-periodicities in the near-infrared data from the Keck Telescope have so far been negative. One interpretation of the character of these variations is that they result from a recurring disk instability, rather than from variations in the mass accretion rate flowing through the outer boundary of the emission region. However, neither a variable accretion rate nor a mechanism associated with a jet can presently be ruled out.


2016 ◽  
Vol 11 (S322) ◽  
pp. 52-53
Author(s):  
C. Rauch ◽  
E. Ros ◽  
T. P. Krichbaum ◽  
A. Eckart ◽  
J. A. Zensus ◽  
...  

AbstractThe compact radio and near-infrared (NIR) source Sagittarius A* has been observed in the context of two NIR triggered global VLT and VLBA campaigns at 43 GHz (7 mm) on May 16-18 2012 and October 4 2014. While on October 4 2014 Sgr A* remained in a quiescent state, a NIR flare on May 17 2012 is accompanied by an increase in flux density of 0.22 Jy at 7 mm delayed by 4.5±0.5 h. Additionally, Sgr A* seems to develop a weak secondary radio off-core component of 0.02 Jy at a position angle of 140° and an angular distance of 1.5 mas shortly before the peak of the flare. This spatial extension and the time delay are in the range of expected values for events casually connected by adiabatic expansion.


2013 ◽  
Vol 9 (S303) ◽  
pp. 147-149
Author(s):  
L. O. Sjouwerman ◽  
Y. M. Pihlström

AbstractWe report on the detection of 36 and 44 GHz Class I methanol (CH3OH) maser emission in the Sagittarius A (Sgr A) complex with the Karl G. Jansky Very Large Array (VLA). These VLA observations show that the Sgr A complex harbors at least three different maser tracers of shocked regions in the radio regime. The 44 GHz masers correlate with the positions and velocities of previously detected 36 GHz CH3OH masers, but less with 1720 MHz OH masers. Our detections agree with theoretical predictions that the densities and temperatures conducive for 1720 MHz OH masers may also produce 36 and 44 GHz CH3OH maser emission. However, many 44 GHz masers do not overlap with 36 GHz methanol masers, suggesting that 44 GHz masers also arise in regions too hot and too dense for 36 GHz masers to form. This agrees with the non-detection of 1720 MHz OH masers in the same area, which are thought to be excited under even cooler and less dense conditions. We speculate that the geometry of the 36 GHz masers outlines the current location of a shock front.


2013 ◽  
Vol 9 (S303) ◽  
pp. 318-319 ◽  
Author(s):  
P. C. Fragile ◽  
P. Anninos ◽  
S. D. Murray

AbstractUsing three-dimensional, moving-mesh simulations, we investigate the future evolution of the recently discovered gas cloud G2 traveling through the galactic center. From our simulations we expect an average feeding rate onto Sgr A* in the range of (5−19) × 10−8M⊙ yr−1 beginning in 2014. This accretion varies by less than a factor of three on timescales ∼ 1 month, and shows no more than a factor of 10 difference between the maximum and minimum observed rates within any given model. These rates are comparable to the current estimated accretion rate in the immediate vicinity of Sgr A*, although they represent only a small (< 10%) increase over the current expected feeding rate at the effective inner boundary of our simulations (racc = 750 RS ∼ 1015 cm). We also explore multiple possible equations of state to describe the gas. In examining the Br-γ light curves produced from our simulations, we find that all of our isothermal models predict significant (factor of 10) enhancements in the luminosity of G2 as it approaches pericenter, in conflict with observations. Models that instead allow the cloud to heat as it is compressed do better at matching observations.


2020 ◽  
Vol 72 (3) ◽  
Author(s):  
Masato Tsuboi ◽  
Yoshimi Kitamura ◽  
Takahiro Tsutsumi ◽  
Ryosuke Miyawaki ◽  
Makoto Miyoshi ◽  
...  

Abstract The Galactic Center IRS 13E cluster is a very intriguing infrared object located at ${\sim } 0.13$ pc from Sagittarius A$^\ast$ (Sgr A$^\ast$) in projection distance. There are arguments both for and against the hypothesis that a dark mass like an intermediate mass black hole (IMBH) exists in the cluster. We recently detected the rotating ionized gas ring around IRS 13E3, which belongs to the cluster, in the H30$\alpha$ recombination line using ALMA. The enclosed mass is derived to be $M_{\mathrm{encl.}}\simeq 2\times 10^{4}\, M_\odot$, which agrees with an IMBH and is barely less than the astrometric upper limit mass of an IMBH around Sgr A$^\ast$. Because the limit mass depends on the true three-dimensional (3D) distance from Sgr A$^\ast$, it is very important to determine it observationally. However, the 3D distance is indefinite because it is hard to determine the line-of-sight (LOS) distance by usual methods. We attempt here to estimate the LOS distance from spectroscopic information. The CH$_3$OH molecule is easily destroyed by the cosmic rays around Sgr A$^{\ast }$. However, we detected a highly excited CH$_3$OH emission line in the ionized gas stream associated with IRS 13E3. This indicates that IRS 13E3 is located at $r\gtrsim 0.4$ pc from Sgr A$^{\ast }$.


1980 ◽  
Vol 58 ◽  
pp. 585-590 ◽  
Author(s):  
J. Robert Buchler ◽  
Manuel Barranco ◽  
Mario Livio

AbstractWith the help of a very simple two zone model, we demonstrate the possibility of periodic thermal relaxation (limit cycle) oscillations in the helium burning envelope of accreting neutron stars. Physically reasonable model parameters can be chosen which yield agreement with the observed features of x-ray bursts and we suggest that this limit cycle is operative in neutron stars which have an accretion rate in a specific range. For hydrogen burning a similar cycle is possible, but it operates at such high temperatures that an unrealistically large accretion rate would be required.


Sign in / Sign up

Export Citation Format

Share Document