scholarly journals The Behaviour of the Outer Solar Corona (3R⊙to 10R⊙) During a Large Solar Flare Observed from OSO-7 in White Light

1974 ◽  
Vol 57 ◽  
pp. 333-334
Author(s):  
G. E. Brueckner

(Solar Phys.). A very bright coronal streamer was observed on December 13, 1971 by the Naval Research Laboratory's coronagraph on board of OSO-7. The next day, the streamer had changed it's brightness and configuration considerably. Three subsequent coronagraph images, taken on December 14 at 0407, 0418 and 0430 UT show a large plasma cloud moving outward from the Sun between 3 and 10 solar radii. They also show distinct smaller clouds moving outward with projected velocities between 950 and 1100 km s−1. Traced back in time to the lower solar corona, these clouds coincide with discrete type II radiobursts observed from Culgoora between 0241 and 0256 UT. Each single cloud shows it's signature in the radio recording between 100 and 20 MHz. The drift velocity of the radio bursts can be determined to be 1600 km s−1using Newkirk's coronal streamer model. Assuming, that the plasma clouds are ejected from an active region 30° behind the east limb vertically, their true velocities close to the surface of the Sun would be approximately 1400 km s−1, which is in good agreement with the drift velocities determined from the type II bursts, considering all uncertainties. Therefore, the type II burst disturbance moves with the same velocity as the driving material.

1974 ◽  
Vol 57 ◽  
pp. 301-321
Author(s):  
D. J. McLean

The passage of shock waves and ejected matter through the solar corona can produce type II and type IV radio bursts. This paper reviews the observations of these types of bursts and their interpretation, with particular emphasis on recent work.


2013 ◽  
Vol 51 (11) ◽  
pp. 1981-1989 ◽  
Author(s):  
N. Gopalswamy ◽  
H. Xie ◽  
P. Mäkelä ◽  
S. Yashiro ◽  
S. Akiyama ◽  
...  

1974 ◽  
Vol 57 ◽  
pp. 389-393 ◽  
Author(s):  
S. F. Smerd ◽  
K. V. Sheridan ◽  
R. T. Stewart

(Astrophys. Letters). The measured amount of band-splitting, Δf, in the spectra of nine harmonic type II bursts is illustrated in Figure 1. Here, as in previous, smaller samples (Roberts, 1959; Maxwell and Thompson, 1962; Weiss, 1965) Δf is found to increase with frequency, f.


1980 ◽  
Vol 91 ◽  
pp. 251-255
Author(s):  
Alan Maxwell ◽  
Murray Dryer

Solar radio bursts of spectral type II provide a prime diagnostic for the passage of shock waves, generated by solar flares, through the solar corona. In this investigation we have compared radio data on the shocks with computer simulations for the propagation of fast-mode MHD shocks through the solar corona. The radio data were recorded at the Harvard Radio Astronomy Station, Fort Davis, Texas. The computer simulations were carried out at NOAA, Boulder, Colorado.


1994 ◽  
Vol 142 ◽  
pp. 577-581
Author(s):  
G. Mann ◽  
H. Lühr

AbstractRecently, strong large amplitude magnetic field structures (SLAMS) have been observed as a common phenomenon in the vicinity of the quasi-parallel region of Earth’s bow shock. A quasi-parallel shock transition can be considered as a patchwork of SLAMS. Using the data of the AMPTE/IRM magnetometer the properties of SLAMS are studied. Within SLAMS the magnetic field is strongly deformed and, thus, the magnetic field geometry is locally swung into a quasi-perpendicular regime. Therefore, electrons can locally be accelerated to high energies within SLAMS. Assuming that SLAMS also exist in the vicinity of supercritical, quasi-parallel shocks in the solar corona, they are able to generate radio radiation via the enhanced Langmuir turbulence excited by the accelerated electrons. Since SLAMS are connected with strong density enhancements, the aforementioned mechanism can explain the multiple-lane structure often occurred in solar Type II radio bursts.Subject headings: acceleration of particles — Earth — shock waves — Sun: corona — Sun: radio radiation


1977 ◽  
Vol 3 (2) ◽  
pp. 154-157 ◽  
Author(s):  
R. A. Duncan

Soft X-ray photographs of the Sun taken from the manned Skylab satellite (Vaiana et al. 1973) gave, not the earliest, but perhaps the most graphic evidence that the solar corona is patchy. During the Skylab mission (May 1973 to February 1974), the solar corona as usually envisaged covered only 80% of the Sun (Bohlin 1977). The areas lacking a ‘dense’ corona are called coronal holes (Withbroe al. 1971; Waldmeier 1975).


1962 ◽  
Vol 15 (1) ◽  
pp. 120
Author(s):  
M Krishnamurthi ◽  
G Sivarama Sastry ◽  
T Seshagiri Rao

At the time of intense solar flares, various types of enhanced radio emission from the Sun have been observed. Using such techniques as the swept frequency technique first developed by Wild and his associates, these enhanced emissions have been classified into five types. Of particular interest to radio astronomy at metre wavelengths is the slow drift type II bursts. A comprehensive study of these bursts has been made by Roberts (1959). It is now supposed that at the start of a flare an explosion occurs in the lower regions of the solar atmosphere ejecting a column of gas which travels radially outward from the region of the flare. This column of gas is bounded by a shock front which moves forward relative to this gas. This shock front is assumed to excite plasma oscillations in the solar corona giving rise to type II radiation. Velocities of these shock fronts have been determined by various workers.


1974 ◽  
pp. 389-393 ◽  
Author(s):  
S. F. Smerd ◽  
K. V. Sheridan ◽  
R. T. Stewart

Solar Physics ◽  
2019 ◽  
Vol 294 (9) ◽  
Author(s):  
Dheyaa Ameri ◽  
Eino Valtonen ◽  
Silja Pohjolainen

Abstract We have analysed 58 high-energy proton events and 36 temporally related near-relativistic electron events from the years 1997 – 2015 for which the velocity dispersion analysis of the first-arriving particles gave the apparent path lengths between 1 and 3 AU. We investigated the dependence of the characteristics of the proton events on the associations of type II, III, and IV radio bursts. We also examined the properties of the soft X-ray flares and coronal mass ejections associated with these events. All proton events were associated with decametric type III radio bursts, while type IV emission was observed only in the meter wavelengths in some of the events (32/58). Almost all proton events (56/58) were associated with radio type II bursts: 11 with metric (m) type II only, 11 with decametric–hectometric (DH) only, and 34 with type II radio bursts at both wavelength ranges. By examining several characteristics of the proton events, we discovered that the proton events can be divided into two categories. The characteristics of events belonging to the same category were similar, while they significantly differed between events in different categories. The distinctive factors between the categories were the wavelength range of the associated type II radio emission and the temporal relation of the proton release with respect to the type II onset. In Category 1 are the events which were associated with only metric type II emission or both m and DH type II and the release time of protons was before the DH type II onset (18/56 events). Category 2 consists of the events which were associated with only DH type II emission or both m and DH type II and the protons were released at or after the DH type II onset (31/56 events). For seven of the 56 events we were not able to determine a definite category due to timing uncertainties. The events in Category 1 had significantly higher intensity rise rates, shorter rise times, lower release heights, and harder energy spectra than Category 2 events. Category 1 events also originated from magnetically well-connected regions and had only small time differences between the proton release times and the type III onsets. The soft X-ray flares for these events had significantly shorter rise times and durations than for Category 2 events. We found 36 electron events temporally related to the proton events, which fulfilled the same path length criterion as the proton events. We compared the release times of protons and electrons at the Sun, and discovered that in 19 of the 36 events protons were released almost simultaneously (within ${\pm}\,7$ ± 7 minutes) with the electrons, in 16 events protons were released later than the electrons, and in one event electrons were released after the protons. The simultaneous proton and electron events and the delayed proton events did not unambiguously fall in the two categories of proton events, although most of the events in which the protons were released after the electrons belonged to Category 2. We conclude that acceleration of protons in Category 1 events occurred low in the corona, either by CME-driven shocks or below the CMEs in solar flares or in CME initiation related processes. It seems plausible that protons in Category 2 events were accelerated by CME-driven shocks high in the solar corona. Large delays of protons with respect to type III onsets in the events where protons were released after the electrons suggest late acceleration or release of protons close to the Sun, but the exact mechanism causing the delay remained unclear.


Sign in / Sign up

Export Citation Format

Share Document