scholarly journals Wave dynamics and star formation in Taurus

1991 ◽  
Vol 147 ◽  
pp. 317-327
Author(s):  
Ralph E. Pudritz ◽  
Ana I. Gomez de Castro

The mechanism underlying the formation of cores and larger scale structures in molecular clouds must play a fundamental role in the physics of star formation since young stellar objects are usually found within or very near cores (Myers et al 1987, Beichman et al 1986). The Taurus cloud is an ideal object to study in this regard because of its proximity (160 pc), and because only low mass star formation is presently occurring there. Barnard's (1927) beautiful optical photograph of the region reveals that the obscuring gas and dust has filamentary structure that is comparable to the size of the cloud complex (several 10's of pc). This structure is clearly seen in CO maps of the region as well (eg. Duvert et al 1986) where it is apparent that structure on much larger size scales than cores is common. In addition to the filamentary structure one also observes that there are small dark clouds present such as L1489, L1495, etc.

1991 ◽  
Vol 147 ◽  
pp. 317-327
Author(s):  
Ralph E. Pudritz ◽  
Ana I. Gomez de Castro

The mechanism underlying the formation of cores and larger scale structures in molecular clouds must play a fundamental role in the physics of star formation since young stellar objects are usually found within or very near cores (Myers et al 1987, Beichman et al 1986). The Taurus cloud is an ideal object to study in this regard because of its proximity (160 pc), and because only low mass star formation is presently occurring there. Barnard's (1927) beautiful optical photograph of the region reveals that the obscuring gas and dust has filamentary structure that is comparable to the size of the cloud complex (several 10's of pc). This structure is clearly seen in CO maps of the region as well (eg. Duvert et al 1986) where it is apparent that structure on much larger size scales than cores is common. In addition to the filamentary structure one also observes that there are small dark clouds present such as L1489, L1495, etc.


2019 ◽  
Vol 622 ◽  
pp. A54 ◽  
Author(s):  
Thushara Pillai ◽  
Jens Kauffmann ◽  
Qizhou Zhang ◽  
Patricio Sanhueza ◽  
Silvia Leurini ◽  
...  

The infrared dark clouds (IRDCs) G11.11−0.12 and G28.34+0.06 are two of the best-studied IRDCs in our Galaxy. These two clouds host clumps at different stages of evolution, including a massive dense clump in both clouds that is dark even at 70 and 100 μm. Such seemingly quiescent massive dense clumps have been speculated to harbor cores that are precursors of high-mass stars and clusters. We observed these two “prestellar” regions at 1 mm with the Submillimeter Array (SMA) with the aim of characterizing the nature of such cores. We show that the clumps fragment into several low- to high-mass cores within the filamentary structure of the enveloping cloud. However, while the overall physical properties of the clump may indicate a starless phase, we find that both regions host multiple outflows. The most massive core though 70 μm dark in both clumps is clearly associated with compact outflows. Such low-luminosity, massive cores are potentially the earliest stage in the evolution of a massive protostar. We also identify several outflow features distributed in the large environment around the most massive core. We infer that these outflows are being powered by young, low-mass protostars whose core mass is below our detection limit. These findings suggest that low-mass protostars have already formed or are coevally formed at the earliest phase of high-mass star formation.


1997 ◽  
Vol 182 ◽  
pp. 525-536
Author(s):  
Ed Churchwell

Observations during the past several years strongly imply that virtually every star, independent of final mass, goes through a phase of rapid outflow simultaneously with rapid accretion during formation. The structure and properties of outflows and accretion disks associated with low-mass star formation has received intensive observational attention during the past several years (see the reviews and references in Lada 1985; Edwards, Ray, and Mundt 1993; Fukui et al. 1993; and this symposium). Young stellar objects (YSOs) with Lbol < 103 L⊘ will be referred to as “low-mass” stars in this review. The range of physical properties of CO outflows associated with YSOs of all masses are enormous, see Fukui et al. (1993). I will focus attention in this review on what we know about massive YSOs and their environments.


2018 ◽  
Vol 14 (S345) ◽  
pp. 27-33
Author(s):  
Josefa E. Großschedl ◽  
João Alves ◽  
Stefan Meingast ◽  
Birgit Hasenberger

AbstractThe giant molecular cloud Orion A is the closest massive star-forming region to earth (d ∼ 400 pc). It contains the rich Orion Nebula Cluster (ONC) in the North, and low-mass star-forming regions (L1641, L1647) to the South. To get a better understanding of the differences in star formation activity, we perform an analysis of the gas mass distribution and star formation rate across the cloud. We find that the gas is roughly uniformly distributed, while, oddly, the ONC region produced about a factor of ten more stars compared to the rest of the cloud. For a better interpretation of this phenomenon, we use Gaia DR2 parallaxes, to analyse distances of young stellar objects, using them as proxy for cloud distances. We find that the ONC region indeed lies at about 400 pc while the low-mass star-forming parts are inclined about 70∘ from the plane of the sky reaching until ∼470 pc. With this we estimate that Orion A is an about 90 pc long filamentary cloud (about twice as long as previously assumed), with its “Head” (the ONC region) being “bent” and oriented towards the galactic mid-plane. This striking new view allows us to perform a more robust analysis of this important star-forming region in the future.


2004 ◽  
Vol 82 (6) ◽  
pp. 740-743 ◽  
Author(s):  
P A Feldman ◽  
R O Redman ◽  
L W Avery ◽  
J Di Francesco ◽  
J D Fiege ◽  
...  

The line profiles of dense cores in infrared-dark clouds indicate the presence of young stellar objects (YSOs), but the youth of the YSOs and the large distances to the clouds make it difficult to distinguish the outflows that normally accompany star formation from turbulence within the cloud. We report here the first unambiguous identification of a bipolar outflow from a young stellar object (YSO) in an infrared-dark cloud, using observations of SiO to distinguish the relatively small amounts of gas in the outflow from the rest of the ambient cloud. Key words: infrared-dark clouds, star formation, bipolar outflows, SiO, G81.56+0.10.


2000 ◽  
Vol 197 ◽  
pp. 61-70
Author(s):  
Nagayoshi Ohashi

We have carried out interferometric observations of pre-protostellar and protostellar envelopes in Taurus. Protostellar envelopes are dense gaseous condensations with young stellar objects or protostars, while pre-protostellar envelopes are those without any known young stellar objects. Five pre-protostellar envelopes have been observed in CCS JN=32–21, showing flattened and clumpy structures of the envelopes. The observed CCS spectra show moderately narrow line widths, ~0.1 to ~0.35 km s–1. One pre-protostellar envelope, L1544, shows a remarkable velocity pattern, which can be explained in terms of infall and rotation. Our C18O J=1–0 observations of 8 protostellar envelopes show that they have also flattened structures like pre-protostellar envelopes but no clumpy structures. Four out the eight envelopes show velocity patterns that can be explained by motions of infall (and rotation). Physical properties of pre-protostellar and protostellar envelopes are discussed in detail.


2021 ◽  
Author(s):  
Xi Chen ◽  
Zhiyuan Ren ◽  
Da-Lei Li ◽  
Tie Liu ◽  
Ke Wang ◽  
...  

Abstract Theoretical models and numerical simulations suggest that high mass star (with mass > 8 solar mass) can be formed either via monolithic collapse of a massive core or competitive accretion, but the dominant mechanism is currently unclear. Although recent high resolution observations with the Atacama Large Millimeter/submillimeter Array (ALMA) have detected physical and kinematic features, such as disks, outflows and filamentary structures surrounding the high mass young stellar objects (HMYSO), direct detection of the infalling gas towards the HMYSO is still the key to distinguish the different scenarios. Chemically fresh gas inflows have been detected towards low-mass stars being formed, which are consistent with the accretion-disk-outflow process. In this work we report the detection of a chemically fresh inflow which is feeding HMYSO growth in the nearby high mass star-forming region G352.63-1.07. High quality images of the dust and molecular lines from both ALMA and the Submillimeter Array (SMA) have consistently revealed a gravitationally-controlled gas inflow towards a rotating structure (disk or torus) around the HMYSO. The HMYSO is also observed to have an outflow, but it can be clearly separated from the inflow. These kinematic features provide observational evidence to support the conjecture that high-mass stars can be formed in a similar process to that observed in the low-mass counterparts. The chemically fresh infalling streamers could also be related with the disk configuration, fragmentation and accretion bursts that occur in both simulations and observations.


2020 ◽  
Vol 642 ◽  
pp. A86
Author(s):  
P. S. Teixeira ◽  
A. Scholz ◽  
J. Alves

Previous star formation studies have, out of necessity, often defined a population of young stars confined to the proximity of a molecular cloud. Gaia allows us to examine a wider, three-dimensional structure of nearby star forming regions, leading to a new understanding of their history. We present a wide-area survey covering 494 deg2 of the Lupus complex, a prototypical low-mass star forming region. Our survey includes all known molecular clouds in this region as well as parts of the Upper Scorpius and Upper Centaurus Lupus (UCL) groups of the Sco-Cen complex. We combine Gaia DR2 proper motions and parallaxes as well as ALLWISE mid-infrared photometry to select young stellar objects (YSOs) with disks. The YSO ages are inferred from Gaia color-magnitude diagrams, and their evolutionary stages from the slope of the spectral energy distributions. We find 98 new disk-bearing sources. Our new sample includes objects with ages ranging from 1 to 15 Myr and masses ranging from 0.05 to 0.5 M⊙, and consists of 56 sources with thick disks and 42 sources with anemic disks. While the youngest members are concentrated in the clouds and at distances of 160 pc, there is a distributed population of slightly older stars that overlap in proper motion, spatial distribution, distance, and age with the Lupus and UCL groups. The spatial and kinematic properties of the new disk-bearing YSOs indicate that Lupus and UCL are not distinct groups. Our new sample comprises some of the nearest disks to Earth at these ages, and thus provides an important target for follow-up studies of disks and accretion in very low mass stars, for example with ALMA and ESO-VLT X-shooter.


2018 ◽  
Vol 617 ◽  
pp. A63 ◽  
Author(s):  
L. Prisinzano ◽  
F. Damiani ◽  
M. G. Guarcello ◽  
G. Micela ◽  
S. Sciortino ◽  
...  

Context. Most stars are born in clusters, and recent results suggest that star formation (SF) preferentially occurs in subclusters. Studying the morphology and SF history of young clusters is crucial for understanding early cluster formation processes. Aims. We aim to identify the embedded population of young stellar objects (YSOs) down to the low-mass stars in the M-type regime in the three H II regions RCW 33, RCW 32, and RCW 27, which are located in the northwestern region of the Vela Molecular Ridge. Our aim is to characterize their properties, such as morphology and extent of the clusters in the three H II regions, derive stellar ages, and determine the connection of the SF history with the environment. Methods. Through public photometric surveys such as Gaia, VPHAS+, 2MASS, and Spitzer/GLIMPSE, we identify YSOs with classical techniques aimed at detecting IR, Hα, and UV excesses as signatures of circumstellar disks and accretion. In addition, we implement a method for distinguishing main-sequence (MS) stars and giants in the M-type regime by comparing the reddening derived in several optical/IR color-color diagrams, assuming suitable theoretical models. Since this diagnostic is sensitive to stellar gravity, the procedure allows us to also identify pre-MS (PMS) stars. Results. Using the classical membership criteria, we find that a large population of YSOs shows signatures of circumstellar disks with or without accretion. In addition, with the new technique of M-type star selection, we find a rich population of young M-type stars whose spatial distribution strongly correlates with the more massive population. We find evidence of three young clusters, with different morphology, for which we estimate the individual distances using TGAS Gaia data of the brighter subsample. In addition, we identify field stars falling in the same region by securely classifying them as giants and foreground MS stars. Conclusions. We identify the embedded population of YSOs down to about 0.1 M⊙ that is associated with the three H II regions RCW 33, RCW 32, and RCW 27 and the three clusters Vela T2, Cr 197, and Vela T1, respectively. All the three clusters are located at a similar distance, but they have very different morphologies. Our results suggest a decreasing SF rate in Vela T2 and triggered SF in Cr 197 and Vela T1.


Author(s):  
Ryohei Harada ◽  
Toshikazu Onishi ◽  
Kazuki Tokuda ◽  
Sarolta Zahorecz ◽  
Annie Hughes ◽  
...  

Abstract The aim of this study is to characterize the distribution and basic properties of the natal gas associated with high-mass young stellar objects (YSOs) in isolated environments in the Large Magellanic Cloud. High-mass stars usually form in giant molecular clouds (GMCs) as part of a young stellar cluster, but some OB stars are observed far from GMCs. By examining the spatial coincidence between the high-mass YSOs and 12CO (J = 1–0) emission detected by NANTEN and Mopra observations, we selected ten high-mass YSOs that are located away from any of the NANTEN clouds but are detected by the Mopra pointed observations. The ALMA observations revealed that a compact molecular cloud whose mass is a few thousand solar masses or smaller is associated with the high-mass YSOs, which indicates that these compact clouds are the sites of high-mass star formation. The high density and high temperature throughout the clouds are explained by the severe photodissociation of CO due to the lower metallicity than in the Galaxy. The star formation efficiency ranges from several to as high as ∼40%, indicating efficient star formation in these environments. The enhanced turbulence may be a cause of the efficient star formation therein, as judged from the gas velocity information and the association with the lower density gas.


Sign in / Sign up

Export Citation Format

Share Document