SiO as a chemical signature of outflows from bright, compact sources in MSX IR-dark clouds

2004 ◽  
Vol 82 (6) ◽  
pp. 740-743 ◽  
Author(s):  
P A Feldman ◽  
R O Redman ◽  
L W Avery ◽  
J Di Francesco ◽  
J D Fiege ◽  
...  

The line profiles of dense cores in infrared-dark clouds indicate the presence of young stellar objects (YSOs), but the youth of the YSOs and the large distances to the clouds make it difficult to distinguish the outflows that normally accompany star formation from turbulence within the cloud. We report here the first unambiguous identification of a bipolar outflow from a young stellar object (YSO) in an infrared-dark cloud, using observations of SiO to distinguish the relatively small amounts of gas in the outflow from the rest of the ambient cloud. Key words: infrared-dark clouds, star formation, bipolar outflows, SiO, G81.56+0.10.

1991 ◽  
Vol 147 ◽  
pp. 93-99
Author(s):  
Sheo S. Prasad

Chemical considerations and simplified dynamical modeling suggest that dark cloud cores may be incessantly evolving such that the time spent at high core densities decreases as the density increases. After reaching a high density, gravitationally contracting dark cloud cores may either form stars or expand to states of lower densities. Cloud mass and initial density are amongst the factors that may control the evolutionary fate of the core. This view is diametrically opposite of the common belief that dense cores may be in near mechanical equilibrium. Mutually consistent end-to-end modeling of the spectral line profiles and intensities is needed to discern the reality.


2019 ◽  
Vol 487 (2) ◽  
pp. 1517-1528 ◽  
Author(s):  
Xu Li ◽  
Jarken Esimbek ◽  
Jianjun Zhou ◽  
W A Baan ◽  
Weiguang Ji ◽  
...  

Abstract A multi-wavelength analysis of the large Galactic infrared bubble N 24 is presented in this paper in order to investigate the molecular and star-formation environment around expanding H ii regions. Using archival data from Herschel and ATLASGAL, the distribution and physical properties of the dust over the entire bubble are studied. Using the Clumpfind2d algorithm, 23 dense clumps are identified, with sizes and masses in the range 0.65–1.73 pc and 600–16 300 M⊙, respectively. To analyse the molecular environment in N 24, observations of NH3 (1,1) and (2,2) were carried out using the Nanshan 26-m radio telescope. Analysis of the kinetic temperature and gravitational stability of these clumps suggests gravitational collapse in several of them. The mass–size distributions of the clumps and the presence of massive young protostars indicate that the shell of N 24 is a region of ongoing massive-star formation. The compatibility of the dynamical and fragmentation timescales and the overabundance of young stellar objects and clumps on the rim suggest that the ‘collect-and-collapse’ mechanism is in play at the boundary of the bubble, but the existence of the infrared dark cloud at the edge of bubble indicates that a ‘radiation-driven implosion’ mechanism may also have played a role there.


2012 ◽  
Vol 8 (S287) ◽  
pp. 280-281
Author(s):  
Olga Bayandina ◽  
Irina Val'tts ◽  
Grigorii Larionov

AbstractAn identification has been conducted of class I methanol masers with 1) short-wave infrared objects EGO (extended green objects) - tracer bipolar outflow of matter in young stellar objects, and 2) isolated pre-protostellar gas-dust cores of the interstellar medium which are observed in absorption in the mid-infrared in the Galactic plane. It is shown that more than 50% of class I methanol masers are identified with bipolar outflows, considering the EGO as bipolar outflows (as compared with the result of 22% in the first version of the MMI catalog that contains no information about EGO). 99 from 139 class I methanol masers (71%) are identified with SDC. Thus, it seems possible that the MMI can be formed in isolated self-gravitating condensations, which are the silhouette of dark clouds - IRDC and SDC.


1987 ◽  
Vol 122 ◽  
pp. 87-88
Author(s):  
G. Silvestro ◽  
M. Robberto

High velocity molecular outflows with bipolar morphology are detected in association with young stellar objects within dense interstellar clouds. Recent observations suggest that the flow could be “confined to a relatively thin, swept-up shell surrounding an evacuated wind cavity” (1). A shell structure characteristic of the wind-cloud interaction had been predicted in earlier theoretical works (see for instance (2)). More recently, models with different (not shell-shaped) geometries were presented, e.g. (3).


2006 ◽  
Vol 2 (S237) ◽  
pp. 464-464
Author(s):  
Dawn E. Peterson ◽  
R. A. Gutermuth ◽  
M. F. Skrutskie ◽  
S. T. Megeath ◽  
J. L. Pipher ◽  
...  

AbstractBok globules, optically opaque small dark clouds, are classical examples of isolated star formation. However, the collapse mechanism for these cold, dense clouds of gas and dust is not well understood. Observations of Bok globules include some which appear to be starless while others harbor single stars, binaries and even small groups of forming stars. One example of a Bok globule forming a group of stars is CB 34, observed with both the IRAC and MIPS instruments as part of the Spitzer Young Cluster Survey. Based on initial analysis of 1-8 μm photometry from IRAC and the Two Micron All Sky Survey (2MASS), we identified 9 Class 0/I and 14 Class II young stellar objects within the small, 4.5′ × 4.5′ region encompassing CB 34. This unusually high number of protostars compared with Class II sources is intriguing because it implies a high rate of star formation. Therefore we have begun a larger study of this region in order to determine why and how CB 34 started forming stars at such a high rate. Is CB 34 embedded within a larger HII region which may have triggered its collapse or does it appear to have collapsed in isolation from outside influences?


2020 ◽  
Vol 498 (4) ◽  
pp. 5109-5115
Author(s):  
T Yu Magakian ◽  
T A Movsessian ◽  
H R Andreasyan ◽  
J Bally ◽  
A S Rastorguev

ABSTRACT Looking for evidence of recent star formation, we have studied a small comet-shaped reflection nebula, known as BBWo 192E (GM 1–23), which is located in the dark cloud SL 4 in the Vela Molecular Ridge cloud C, and a young infrared cluster embedded into the nebula. We obtained the images of BBWo 192E in Hα and [S ii] lines and in a Sloan Digital Sky Survey i ′ filter with the Blanco telescope at the Cerro Tololo Inter-American Observatory in order to discover new Herbig–Haro (HH) flows. We used the Two-Micron All-Sky Survey and the Wide-field Infrared Survey Explorer to search for additional member stars of the cluster. We also studied the proper motions and parallaxes of the cluster members using GAIA Data Release 2. Five new groups containing at least nine HH objects, tracing several distinct outflows, were revealed. A previously unreported reflection nebula and a number of probable outflow sources were found in the infrared range. The proper motions allowed us to select eight probable member stars in the visual range. Their parallaxes correspond to a mean distance 800 ± 100 pc for this cluster. The bolometric luminosities of the brightest cluster members are 1010 L⊙ (IRAS 08513−4201, the strong source in the centre of the cluster) and 2–6 L⊙ for the five other stars. The existence of optical HH flows around the infrared cluster of young stellar objects suggests that star formation in this cloud is ongoing around the more massive Herbig Ae/Be star. Considering its morphology and other features, this star-forming region is similar to the zone of star formation near CPM 19.


2019 ◽  
Vol 487 (1) ◽  
pp. 1315-1334 ◽  
Author(s):  
Lixia Yuan ◽  
Ming Zhu ◽  
Tie Liu ◽  
Jinghua Yuan ◽  
Yuefang Wu ◽  
...  

Abstract We present a multiwavelength study of the Planck Galactic cold clump G181.84+0.31, which is located at the northern end of the extended filamentary structure S242. We have extracted nine compact dense cores from the SCUBA-2 850-$\hbox{$\mu $m}$ map, and we have identified 18 young stellar objects (YSOs; four Class I and 14 Class II) based on their Spitzer, Wide-field Infrared Survey Explorer(WISE) and Two-Micron All-Sky Survey (2MASS) near- and mid-infrared colours. The dense cores and YSOs are mainly distributed along the filamentary structures of G181.84 and are well traced by HCO+(1–0) and N2H+(1–0) spectral-line emission. We find signatures of sequential star formation activities in G181.84: dense cores and YSOs located in the northern and southern substructures are younger than those in the central region. We also detect global velocity gradients of about 0.8 ± 0.05 and 1.0 ± 0.05 km s−1 pc−1 along the northern and southern substructures, respectively, and local velocity gradients of 1.2 ± 0.1 km s−1 pc−1 in the central substructure. These results might be due to the fact that the global collapse of the extended filamentary structure S242 is driven by an edge effect, for which the filament edges collapse first and then further trigger star formation activities inward. We identify three substructures in G181.84 and estimate their critical masses per unit length, which are ∼101 ± 15, 56 ± 8 and 28 ± 4 M⊙ pc−1, respectively. These values are all lower than the observed values (∼200 M⊙ pc−1), suggesting that these substructures are gravitationally unstable.


2020 ◽  
Vol 499 (2) ◽  
pp. 1666-1681
Author(s):  
G Cosentino ◽  
I Jiménez-Serra ◽  
J D Henshaw ◽  
P Caselli ◽  
S Viti ◽  
...  

ABSTRACT Infrared dark clouds (IRDCs) are very dense and highly extincted regions that host the initial conditions of star and stellar cluster formation. It is crucial to study the kinematics and molecular content of IRDCs to test their formation mechanism and ultimately characterize these initial conditions. We have obtained high-sensitivity Silicon Monoxide, SiO(2–1), emission maps towards the six IRDCs, G018.82–00.28, G019.27+00.07, G028.53–00.25, G028.67+00.13, G038.95–00.47, and G053.11+00.05 (cloud A, B, D, E, I, and J, respectively), using the 30-m antenna at the Instituto de Radioastronomía Millimétrica (IRAM30m). We have investigated the SiO spatial distribution and kinematic structure across the six clouds to look for signatures of cloud–cloud collision events that may have formed the IRDCs and triggered star formation within them. Towards clouds A, B, D, I, and J, we detect spatially compact SiO emission with broad-line profiles that are spatially coincident with massive cores. Towards the IRDCs A and I, we report an additional SiO component that shows narrow-line profiles and that is widespread across quiescent regions. Finally, we do not detect any significant SiO emission towards cloud E. We suggest that the broad and compact SiO emission detected towards the clouds is likely associated with ongoing star formation activity within the IRDCs. However, the additional narrow and widespread SiO emission detected towards cloud A and I may have originated from the collision between the IRDCs and flows of molecular gas pushed towards the clouds by nearby H ii regions.


1991 ◽  
Vol 147 ◽  
pp. 317-327
Author(s):  
Ralph E. Pudritz ◽  
Ana I. Gomez de Castro

The mechanism underlying the formation of cores and larger scale structures in molecular clouds must play a fundamental role in the physics of star formation since young stellar objects are usually found within or very near cores (Myers et al 1987, Beichman et al 1986). The Taurus cloud is an ideal object to study in this regard because of its proximity (160 pc), and because only low mass star formation is presently occurring there. Barnard's (1927) beautiful optical photograph of the region reveals that the obscuring gas and dust has filamentary structure that is comparable to the size of the cloud complex (several 10's of pc). This structure is clearly seen in CO maps of the region as well (eg. Duvert et al 1986) where it is apparent that structure on much larger size scales than cores is common. In addition to the filamentary structure one also observes that there are small dark clouds present such as L1489, L1495, etc.


1991 ◽  
Vol 147 ◽  
pp. 93-99
Author(s):  
Sheo S. Prasad

Chemical considerations and simplified dynamical modeling suggest that dark cloud cores may be incessantly evolving such that the time spent at high core densities decreases as the density increases. After reaching a high density, gravitationally contracting dark cloud cores may either form stars or expand to states of lower densities. Cloud mass and initial density are amongst the factors that may control the evolutionary fate of the core. This view is diametrically opposite of the common belief that dense cores may be in near mechanical equilibrium. Mutually consistent end-to-end modeling of the spectral line profiles and intensities is needed to discern the reality.


Sign in / Sign up

Export Citation Format

Share Document