11.—High-Frequency Scattering in a Certain Stratified Medium. The Two-part Problem

Author(s):  
W. G. C. Boyd

SynopsisThe propagation of scalar waves in a certain two-dimensional medium is considered. The incident field, which is due to the presence of a line source, is scattered by two coupled half-planes on each of which the impedance takes a constant value. The Wiener-Hopf technique is used to find a solution which is then examined asymptotically for high frequency. It is found that there is an illuminated region in which the solution is expressed in terms of geometrical optics rays, and a shadow region in which the solution is described by creeping modes. The point of impedance discontinuity may be regarded as producing secondary radiation. The nature of this secondary radiation is quite different according as the point of impedance discontinuity lies in the illuminated or shadow region of the geometrical optics field produced by the source.

The high-frequency scattering of scalar waves by a plane boundary in a certain two-dimensional stratified medium is considered. On the boundary, it is assumed that the impedance takes three different values. A high-frequency approximation to the solution is found for certain positions of source and point of observation; it is proved rigorously that the approximation is asymptotic to the exact field in the limit of high frequency. Physically, the results imply that energy propagates by means of Keller’s creeping modes, mode conversion occurring at the points of impedance discontinuity.


2017 ◽  
Vol 139 (5) ◽  
Author(s):  
Yusuf Ziya Umul

The scattered acoustic waves by a transmissive half-plane, which is illuminated by a line source, are investigated. The high-frequency diffracted wave expressions are obtained by taking into account a resistive half-screen that is defined in electromagnetics. The uniform diffracted fields are expressed in terms of the Fresnel cylinder functions. The behavior of the waves is compared with the case when the uniform theory of diffraction is considered. The geometrical optics and diffracted fields are examined numerically.


2020 ◽  
Author(s):  
Trevor Brown ◽  
Yousef Vahabzadeh ◽  
Christophe Caloz ◽  
Puyan Mojabi

<pre>A method based on electromagnetic inversion is extended to facilitate the design of passive, lossless, and reciprocal metasurfaces. More specifically, the inversion step is modified to ensure that the field transformation satisfies local power conservation, using available knowledge of the incident field. This paper formulates a novel cost functional to apply this additional constraint, and describes the optimization procedure used to find a solution that satisfies both the user-defined field specifications and local power conservation. Lastly, the method is demonstrated with a two-dimensional (2D) example.</pre>


Author(s):  
Priya R. Kamath ◽  
Kedarnath Senapati ◽  
P. Jidesh

Speckles are inherent to SAR. They hide and undermine several relevant information contained in the SAR images. In this paper, a despeckling algorithm using the shrinkage of two-dimensional discrete orthonormal S-transform (2D-DOST) coefficients in the transform domain along with shock filter is proposed. Also, an attempt has been made as a post-processing step to preserve the edges and other details while removing the speckle. The proposed strategy involves decomposing the SAR image into low and high-frequency components and processing them separately. A shock filter is used to smooth out the small variations in low-frequency components, and the high-frequency components are treated with a shrinkage of 2D-DOST coefficients. The edges, for enhancement, are detected using a ratio-based edge detection algorithm. The proposed method is tested, verified, and compared with some well-known models on C-band and X-band SAR images. A detailed experimental analysis is illustrated.


2021 ◽  
Vol 91 (8) ◽  
pp. 887-911
Author(s):  
Manuel F. Isla ◽  
Ernesto Schwarz ◽  
Gonzalo D. Veiga ◽  
Jerónimo J. Zuazo ◽  
Mariano N. Remirez

ABSTRACT The intra-parasequence scale is still relatively unexplored territory in high-resolution sequence stratigraphy. The analysis of internal genetic units of parasequences has commonly been simplified to the definition of bedsets. Such simplification is insufficient to cover the complexity involved in the building of individual parasequences. Different types of intra-parasequence units have been previously identified and characterized in successive wave-dominated shoreface–shelf parasequences in the Lower Cretaceous Pilmatué Member of the Agrio Formation in central Neuquén Basin. Sedimentary and stratigraphic attributes such as the number of intra-parasequence units, their thickness, the proportions of facies associations in the regressive interval, the lateral extent of bounding surfaces, the degree of deepening recorded across these boundaries, and the type and lateral extent of associated transgressive deposits are quantitatively analyzed in this paper. Based on the analysis of these quantified attributes, three different scales of genetic units in parasequences are identified. 1) Bedset complexes are 10–40 m thick, basin to upper-shoreface successions, bounded by 5 to 16 km-long surfaces with a degree of deepening of one to three facies belts. These stratigraphic units represent the highest hierarchy of intra-parasequence stratigraphic units, and the vertical stacking of two or three of them typically forms an individual parasequence. 2) Bedsets are 2–20 m thick, offshore to upper-shoreface successions, bounded by up to 10 km long surfaces with a degree of deepening of zero to one facies belt. Two or three bedsets stack vertically build a bedset complex. 3) Sub-bedsets are 0.5–5 m thick, offshore transition to upper-shoreface successions, bounded by 0.5 to 2 km long surfaces with a degree of deepening of zero to one facies belt. Two or three sub-bedsets commonly stack to form bedsets. The proposed methodology indicates that the combination of thickness with the proportion of facies associations in the regressive interval of stratigraphic units can be used to discriminate between bedsets and sub-bedsets, whereas for higher ranks (bedsets and bedset complexes) the degree of deepening, lateral extent of bounding surfaces, and the characteristics of associated shell-bed deposits become more effective. Finally, the results for the Pilmatué Member are compared with other ancient and Holocene examples to improve understanding of the high-frequency evolution of wave-dominated shoreface–shelf systems.


2008 ◽  
Author(s):  
Sungkwun Kenneth Lyo ◽  
Wei Pan ◽  
John Louis Reno ◽  
Joel Robert Wendt ◽  
Daniel Lee Barton

Sign in / Sign up

Export Citation Format

Share Document