XXVIII.—The Structure of the Foot in certain Mosses and in Anthoceros lœvis

1934 ◽  
Vol 57 (3) ◽  
pp. 699-709 ◽  
Author(s):  
Nellie M. Blaikley

The writer recently undertook an investigation of certain aspects of the water relationships in the gametophyte of Polytrichum (2), showing that a large quantity of water ascends through the central strand of the stem and is given off in transpiration from the leafy shoot. The experiments were later extended to the sporophyte, the transpiration rate again being measured (3). While these observations were in progress, it was suggested that it would be useful at the same time to examine in detail the structure of the absorbing organ of the sporophyte, usually referred to as the “foot,” an organ which has been defined by Hy (16) as that part of the seta which is embedded throughout its life in the tissues of the gametophyte.

HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 540a-540
Author(s):  
K.J. Prevete ◽  
R.T. Fernandez

Three species of herbaceous perennials were tested on their ability to withstand and recover from drought stress periods of 2, 4, and 6 days. Eupatorium rugosum and Boltonia asteroides `Snowbank' were chosen because of their reported drought intolerance, while Rudbeckia triloba was chosen based on its reported drought tolerance. Drought stress began on 19 Sept. 1997. Plants were transplanted into the field the day following the end of each stress period. The effects of drought on transpiration rate, stomatal conductance, and net photosynthetic rate were measured during the stress and throughout recovery using an infrared gas analysis system. Leaf gas exchange measurements were taken through recovery until there were no differences between the stressed plants and the control plants. Transpiration, stomatal conductance, and photosynthesis of Rudbeckia and Boltonia were not affected until 4 days after the start of stress. Transpiration of Eupatorium decreased after 3 days of stress. After rewatering, leaf gas exchange of Boltonia and Rudbeckia returned to non-stressed levels quicker than Eupatorium. Growth measurements were taken every other day during stress, and then weekly following transplanting. Measurements were taken until a killing frost that occurred on 3 Nov. There were no differences in the growth between the stressed and non-stressed plants in any of the species. Plants will be monitored throughout the winter, spring, and summer to determine the effects of drought on overwintering capability and regrowth.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sherzod Nigmatullayevich Rajametov ◽  
Eun Young Yang ◽  
Myeong Cheoul Cho ◽  
Soo Young Chae ◽  
Hyo Bong Jeong ◽  
...  

AbstractUnderstanding the mechanism for heat tolerance is important for the hot pepper breeding program to develop heat-tolerant cultivars in changing climate. This study was conducted to investigate physiological and biochemical parameters related to heat tolerance and to determine leaf heat damage levels critical for selecting heat-tolerant genotypes. Seedlings of two commercial cultivars, heat-tolerant ‘NW Bigarim’ (NB) and susceptible ‘Chyung Yang’ (CY), were grown in 42 °C for ten days. Photosynthesis, electrolyte conductivity, proline content were measured among seedlings during heat treatment. Photosynthetic rate was significantly reduced in ‘CY’ but not in ‘NB’ seedlings in 42 °C. Stomatal conductivity and transpiration rate was significantly higher in ‘NB’ than ‘CY’. Proline content was also significantly higher in ‘NB’. After heat treatment, leaf heat damages were determined as 0, 25, 50 and 75% and plants with different leaf heat damages were moved to a glasshouse (30–32/22–24 °C in day/night). The growth and developmental parameters were investigated until 70 days. ‘NB’ was significantly affected by leaf heat damages only in fruit yield while ‘CY’ was in fruit set, number and yield. ‘NB’ showed fast recovery after heat stress compared to ‘CY’. These results suggest that constant photosynthetic rate via increased transpiration rate as well as high proline content in heat stress condition confer faster recovery from heat damage of heat-tolerant cultivars in seedlings stages.


2013 ◽  
Vol 17 (12) ◽  
pp. 5079-5096 ◽  
Author(s):  
A. Richard ◽  
S. Galle ◽  
M. Descloitres ◽  
J.-M. Cohard ◽  
J.-P. Vandervaere ◽  
...  

Abstract. Forests are thought to play an important role in the regional dynamics of the West African monsoon, through their capacity to extract water from a permanent and deep groundwater table to the atmosphere even during the dry season. It should be the case for riparian forests too, as these streambank forests are key landscape elements in Sudanian West Africa. The interplay of riparian forest and groundwater in the local hydrodynamics was investigated, by quantifying their contribution to the water balance. Field observations from a comprehensively instrumented hillslope in northern Benin were used. Particular attention was paid to measurements of actual evapotranspiration, soil water and deep groundwater levels. A vertical 2-D hydrological modelling approach using the Hydrus software was used as a testing tool to understand the interactions between the riparian area and the groundwater. The model was calibrated and evaluated using a multi-criteria approach (reference simulation). A virtual experiment, including three other simulations, was designed (no forest, no groundwater, neither forest nor groundwater). The model correctly simulated the hydrodynamics of the hillslope regarding vadose zone dynamics, deep groundwater fluctuation and actual evapotranspiration dynamics. The virtual experiment showed that the riparian forest transpiration depleted the deep groundwater table level and disconnected it from the river, which is consistent with the observations. The riparian forest and the deep groundwater table actually form an interacting transpiration system: the high transpiration rate in the riparian area was shown to be due to the existence of the water table, supplied by downslope lateral water flows within the hillslope soil layer. The simulated riparian transpiration rate was practically steady all year long, around 7.6 mm d−1. This rate lies within high-end values of similar study results. The riparian forest as simulated here contributes to 37% of the annual hillslope transpiration, and reaches 57% in the dry season, whereas it only covers 5% of the hillslope area.


2005 ◽  
Vol 32 (10) ◽  
pp. 945 ◽  
Author(s):  
Thomas R. Sinclair ◽  
Graeme L. Hammer ◽  
Erik J. van Oosterom

Limitations on maximum transpiration rates, which are commonly observed as midday stomatal closure, have been observed even under well-watered conditions. Such limitations may be caused by restricted hydraulic conductance in the plant or by limited supply of water to the plant from uptake by the roots. This behaviour would have the consequences of limiting photosynthetic rate, increasing transpiration efficiency, and conserving soil water. A key question is whether the conservation of water will be rewarded by sustained growth during seed fill and increased grain yield. This simulation analysis was undertaken to examine consequences on sorghum yield over several years when maximum transpiration rate was imposed in a model. Yields were simulated at four locations in the sorghum-growing area of Australia for 115 seasons at each location. Mean yield was increased slightly (5–7%) by setting maximum transpiration rate at 0.4 mm h–1. However, the yield increase was mainly in the dry, low-yielding years in which growers may be more economically vulnerable. In years with yield less than ∼450 g m–2, the maximum transpiration rate trait resulted in yield increases of 9–13%. At higher yield levels, decreased yields were simulated. The yield responses to restricted maximum transpiration rate were associated with an increase in efficiency of water use. This arose because transpiration was reduced at times of the day when atmospheric demand was greatest. Depending on the risk attitude of growers, incorporation of a maximum transpiration rate trait in sorghum cultivars could be desirable to increase yields in dry years and improve water use efficiency and crop yield stability.


Author(s):  
Sherzod Rajametov ◽  
Eun Young Yang ◽  
Myeong Cheoul Cho ◽  
Soo Young Chae ◽  
Hyo Bong Jeong ◽  
...  

Understanding the mechanism for heat tolerance is important for the hot pepper breeding program to develop heat-tolerant cultivars in changing climate. This study was conducted to investigate physiological and biochemical parameters related to heat tolerance and to determine leaf heat damage levels critical for selecting heat-tolerant genotypes. Seedlings of two commercial cultivars, heat-tolerant ‘NW Bigarim’ (NB) and susceptible ‘Chyung Yang’ (CY), were grown in 42 °C for ten days. Photosynthesis, electrolyte conductivity, proline content were measured among seedlings during heat treatment. Photosynthetic rate was significantly reduced in ‘CY’ but not in ‘NB’ seedlings in 42 °C. Stomatal conductivity and transpiration rate was significantly higher in ‘NB’ than ‘CY’. Proline content was also significantly higher in ‘NB’. After heat treatment, leaf heat damages were determined as 0, 25, 50 and 75% and plants with different leaf heat damages were moved to a glasshouse (30–32/22–24 °C in day/night). The growth and developmental parameters were investigated until 70 days. ‘NB’ was significantly affected by leaf heat damages only in fruit yield while ‘CY’ was in fruit set, number and yield. ‘NB’ showed fast recovery after heat stress compared to ‘CY’. These results suggest that constant photosynthetic rate via increased transpiration rate as well as high proline content in heat stress condition confer faster recovery from heat damage of heat-tolerant cultivars in seedlings stages.


2019 ◽  
Author(s):  
Ari Sugiarto ◽  
Hanifa Marisa ◽  
Sarno

Abstract Global warming is one of biggest problems faced in the 21st century. One of the impacts of global warming is that it can affect the transpiration rate of plants that °Ccur. This study purpose to see how much increase in air temperature that occurred in the region of South Sumatra Province and to know the effect of increase in ari temperature in the region of South Sumatra Province on transpiration rate of Lansium domesticum Corr. This study used a complete randomized design with 9 treatments (22.9 °C, 23.6 °C, 24.6 °C, 26.3 °C, 27 °C, 27.8 °C, 31.7 °C, 32.5 °C, and 32.9 °C) and 3 replications. Air temperature data as secondary data obtained from the Meteorology, Climatology and Geophysics Agency (MCGA) Palembang Climatology Station in South Sumatra Province. The measurement of transpiration rate is done by modified potometer method with additional glass box. The data obtained are presented in the form of tables and graphs. Transpiration rate (mm3/g plant/hour) at temperture 22.9 °C = 4.37, 23.6 °C = 7.03, 24.6 °C = 8.03, 26.3 °C = 10.11, 27 °C = 13.13, 27.8 °C = 17.87, 31.7 °C = 23.21, 32.5 °C= 25.45 and 32.9 °C= 27.24. At the minimum air temperature in the region of South Sumatra Province there is increase in air temperature of 1.5 °C, average daily air temperature increase 1.3 °C and maximum air temperature increase 1.2 °C.


10.5109/24304 ◽  
1999 ◽  
Vol 44 (1/2) ◽  
pp. 39-47
Author(s):  
Osamu Hirota ◽  
Eduardo Villavicencio ◽  
Jiro Chikushi ◽  
Shinichi Takeuchi ◽  
Yoshisuke Nakano

2012 ◽  
pp. 52-64
Author(s):  
Pet Roey Pascual ◽  
Krienkai Mosaleeyanon ◽  
Kanokwan Romyanon ◽  
Chalermpol Kirdmanee

Salt stress elicits various physiological and growth responses of oil palm. A laboratory experiment was conducted to determine the responses of oil palms cultured in vitro under varying salinity levels (0, 85.5, 171.11, 342.21 and 684.43 mM NaCl) to elevated CO2 (1000 μmol CO2/mol) and PPFD (100±5 μmol m-2s-1) in terms of growth characteristics, pigment contents and photosynthetic abilities. After 14 days of culture, net photosynthetic rate (μmol CO2 m-2s-1) of oil palms across varying salinity levels was 5.33 times higher than those cultured under ambient CO, (380±100 Mmol CO2/mol) and PPFD (50±5 μmol m-2s -1). At increased net photosynthetic rate (elevated CO2 and PPFD), despite having no significant difference in pigment contents (chlorophyll a, chlorophyll b, total chlorophyll and carotenoid) between different CO2 and PPFD levels, dry weight and percent dry matter were 0.26 and 0.11 times higher, respectively, as compared to those cultured under ambient CO2 and PPFD. In the same elevated CO2 and PPFD level, across all salinity levels, stomatal conductance was 0.30 times lower than those cultured under ambient CO2 and PPFD. At reduced stomatal conductance (elevated CO2 and PPFD), transpiration rate was also reduced by 0.30 times. Thus with increased net photosynthetic rate and reduced transpiration rate, water use efficiency was increased by 7.22 times, across all salinity levels, than those cultured at ambient CO2 and PPFD. These were considered essential for NaCl produces iso-osmotic stress.


Sign in / Sign up

Export Citation Format

Share Document