Précis of The Emperor's New Mind: Concerning computers, minds, and the laws of physics

1990 ◽  
Vol 13 (4) ◽  
pp. 643-655 ◽  
Author(s):  
Roger Penrose

AbstractThe emperor's new mind (hereafter Emperor) is an attempt to put forward a scientific alternative to the viewpoint of “strong AI,” according to which mental activity is merely the acting out of some algorithmic procedure. John Searle and other thinkers have likewise argued that mere calculation does not, of itself, evoke conscious mental attributes, such as understanding or intentionality, but they are still prepared to accept the action the brain, like that of any other physical object, could in principle be simulated by a computer. In Emperor I go further than this and suggest that the outward manifestations ofconscious mental activity cannot even be properly simulated by calculation. To support this view, I use various arguments to show that the results of mathematical insight, in particular, do not seem to be obtained algorithmically. The main thrust ofthis work, however, is to present an overview ofthe present state of physical understanding and to show that an important gap exists at the point where, quantum and classical physics meet, as well as to speculate on how the conscious brain might be taking advantage ofwhatever new physics is needed to fill this gap to achieve its nonalgorithmic effects.

Author(s):  
Roger Penrose ◽  
Martin Gardner

What need we know of the workings of Nature in order to appreciate how consciousness may be part of it? Does it really matter what are the laws that govern the constituent elements of bodies and brains? If our conscious perceptions are merely the enacting of algorithms, as many AI supporters would have us believe, then it would not be of much relevance what these laws actually are. Any device which is capable of acting out an algorithm would be as good as any other. Perhaps, on the other hand, there is more to our feelings of awareness than mere algorithms. Perhaps the detailed way in which we are constituted is indeed of relevance, as are the precise physical laws that actually govern the substance of which we are composed. Perhaps we shall need to understand whatever profound quality it is that underlies the very nature of matter, and decrees the way in which all matter must behave. Physics is not yet at such a point. There are many mysteries to be unravelled and many deep insights yet to be gained. Yet, most physicists and physiologists would judge that we already know enough about those physical laws that are relevant to the workings of such an ordinary-sized object as a human brain. While it is undoubtedly the case that the brain is exceptionally complicated as a physical system, and a vast amount about its detailed structure and relevant operation is not yet known, few would claim that it is in the physical principles underlying its behaviour that there is any significant lack of understanding. I shall later argue an unconventional case that, on the contrary, we do not yet understand physics sufficiently well that the functioning of our brains can be adequately described in terms of it, even in principle. To make this case, it will be necessary for me first to provide some overview of the status of present physical theory. This chapter is concerned with what is called ‘classical physics’, which includes both Newton’s mechanics and Einstein’s relativity.


Author(s):  
Richard Healey

Novel quantum concepts acquire content not by representing new beables but through material-inferential relations between claims about them and other claims. Acceptance of quantum theory modifies other concepts in accordance with a pragmatist inferentialist account of how claims acquire content. Quantum theory itself introduces no new beables, but accepting it affects the content of claims about classical magnitudes and other beables unknown to classical physics: the content of a magnitude claim about a physical object is a function of its physical context in a way that eludes standard pragmatics but may be modeled by decoherence. Leggett’s proposed test of macro-realism illustrates this mutation of conceptual content. Quantum fields are not beables but assumables of a quantum theory we use to make claims about particles and non-quantum fields whose denotational content may also be certified by models of decoherence.


Vestnik ◽  
2021 ◽  
pp. 190-195
Author(s):  
М.С. Кулбаева ◽  
А.Н. Курал ◽  
Л.Б. Умбетьярова ◽  
Н.Т. Аблайханова ◽  
Г.К. Атанбаева ◽  
...  

Человека давно интересует вопрос о том, как умственная нагрузка влияет на организм. Известно, что при длительной умственной работе преобразуется сила процессов возбуждения и торможения, изменяется соотношение между ними. С возникновением утомления в головном мозгу нарушаются взаимосвязи между корой больших полушарий и подкорковыми образованиями. При этом наблюдается снижение регулирующего влияния больших полушарий на все функции организма и уменьшение активизирующих воздействий подкорковых отделов мозга. Кроме того, длительное сидячие положение, состояние низкой двигательной активности ведут к значительному уменьшению центростремительных импульсов с рецепторов мышц, сухожилий, суставов. В исследовании приняли участие 17 относительно здоровые, имеющие стабильное физиологическое состояние девушек-студенток в возрасте от 21 до 25 лет. Для исследования были взяты 16 биологически активных точек на стандартных меридианах, связаных с определенным органом. Для оценки физиологического состояния органов до и после умственной нагрузки были исследованы показатели ЭП БАТ на коже. Выявлено снижение показателей каждого органа после умственной нагрузки по сравнению с показателями до ее выполнения со статистической достоверностью во всех исследуемых органах (р<0,05). Особенно низкие значения показателей ЭП БАТ после умственной нагрузки были выявлены в биоактивных точках меридиана печени F.3 Тай-Чун, меридиана толстой кишки GI.5 Ян-Си и GI.4 Хэ-Гу, меридиана сердца С.7 Шэнь-Мэнь, меридиана тонкой кишки IG.1 Шао-Цзе и IG.2 Цянь-Гу, меридиана почек R.1 Юн-Цюань и Р.2 Жань-Гу. Humans has long been interested in the question of how mental activity affects the body It is known that with prolonged mental work, the strength of the processes of excitation and inhibition is transformed, the ratio between them changes. With the onset of fatigue in the brain, the relationship between the cerebral cortex and subcortical formations is disrupted. At the same time, there is a decrease in the regulatory influence of the large hemispheres on all body functions and a decrease in the activating effects of the subcortical parts of the brain. In addition, prolonged sitting, a state of low motor activity leads to a significant decrease in centripetal impulses from the receptors of muscles, tendons, and joints. The study involved 17 relatively healthy, stable physiological condition of female students aged 21 to 25 years. For the study, 16 biologically active points were taken from standard meridians associated with a specific organ. To assess the physiological state of the organs before and after the load of mental labor, the indicators of EC BAP on the skin. A decrease in the indicators of each organ after mental labor was revealed in comparison with the indicators before mental labor with statistical reliability in all the studied organs (p˂0.05). Especially low values of the EC BAP values after a load of mental labor were found in the bioactive points of the liver meridian F. 3 Tai-Chun, the colon meridian GI.5 Yang-Si and GI. 4 He-Gu, the heart meridian C. 7 Shen-Men, the small intestine meridian IG.1 Shao-tse and IG.2 Qian-Gu, the meridian of the kidneys R. 1 Yun-Chuan and R. 2 Zhan-Gu.


Author(s):  
Vadim V. Vasilyev ◽  

In this paper I discuss some aspects of the problem of carriers of human mind and person. The main emphasis is placed on the origin of our idea of the identi­cal self in the stream of perceptions, the need for a physical carrier of our self and person, and on possibility of replacing the biological carriers of self and per­son with artificial analogues. I argue that the idea of identical self is constructed by reflection on memories, that its truth is guaranteed by continuous stream of perceptions kept in memories, and that the stream of perceptions presupposes the presence of a normally functioning brain, which can be considered as a car­rier of our mind and person. Therefore, personal identity turns out to be depen­dent on the identity of the brain in time. An attempt to copy the structures of mind and person onto other possible carriers can thus only lead to creation of duplicates of the original person, but not to the continuation of its existence on another carrier. I argue that the gradual replacement of their components with artificial analogues is a more promising way of transforming the biological carri­ers of human person. To access the possible consequences of such a replacement I analyze arguments of John Searle and David Chalmers, designed to show, re­spectively, the disappearance of consciousness and person with such a replace­ment and, on the contrary, their preservation in a previous state. I explain why Searle’s arguments are unconvincing, and demonstrate that Chalmers’ arguments are based on a hidden premise, the confirmation of which is possible in the con­text of dubious theories of mind-body identity, epiphenomenalism or panpsy­chism only. I conclude that in the current situation it is impossible to predict which consequences for our person would follow such a replacement.


2000 ◽  
Vol 23 (6) ◽  
pp. 1019-1035 ◽  
Author(s):  
J. Allan Hobson ◽  
Edward F. Pace-Schott ◽  
Robert Stickgold

Definitions of dreaming are not required to map formal features of mental activity onto brain measures. While dreaming occurs during all stages of sleep, intense dreaming is largely confined to REM. Forebrain structures and many neurotransmitters can contribute to sleep and dreaming without negating brainstem and aminergic-cholinergic control mechanisms. Reductionism is essential to science and AIM has considerable heuristic value. Recent findings support sleep's role in learning and memory. Emerging technologies may address long-standing issues in sleep and dream research.


Author(s):  
S.S. Pertsov ◽  
E.A. Yumatov ◽  
N.A. Karatygin ◽  
E.N. Dudnik ◽  
A.E. Khramov ◽  
...  

It is a well-known fact that mental activity of the brain can be presented by two different states, i.e., the true state and the false state. A promising method of the electroencephalogram (EEG) wavelet transform has been developed over recent years. Using this method, we evaluated the principle possibility for direct objective registration of mental activity in the human brain. Previously we developed and described (published) a new experimental model and software for recognizing the true and false mental responses of a person with the EEG wavelet transform. The developed experimental model and software-and-data support allowed us to compare (by EEG parameters) two mental states of brain activity, one of which is the false state, while another is the true state. The goal of this study is to develop an absolutely new information technology for recognizing the true and false states in mental activity of the brain by means of the EEG wavelet transform. Our study showed that the true and false states of the brain can be distinguished using the method of continuous wavelet transform and calculation of the EEG wavelet energy. It was revealed that the main differences between truthful and false mental responses are observed in the delta and alpha ranges of the EEG. In the EEG delta rhythm, the wavelet energy is much higher under conditions of the false response as compared to that in the true response. In the EEG alpha rhythm, the wavelet energy is significantly higher with the true answer than in the false one. These data open a new principal possibility of revealing the true and false mental state of the brain by means of continuous wavelet transform and calculation of the EEG wavelet energy.


2019 ◽  
pp. 241-278
Author(s):  
György Buzsáki

The science of space and time began with the invention of measuring instruments, which changed these dimensionless concepts into distance and duration with precise units. This process created a special problem for neuroscience. If space and time correspond to their measured variants, we may wonder what space and time mean without such instruments, including for non-human animals who cannot read those instruments. Nonetheless, contemporary neuroscience still lives within the framework of the classical physics view. Our episodic memories are defined as “what happened to me, where, and when.” This is a typical outside-in approach: assume the concepts and search for their homes in the brain. Yet I argue in this chapter that almost everything that we attribute to space and time in the brain can be accomplished by sequential cell assemblies or neuronal trajectories.


Author(s):  
Joel Paris

DSM-5 aimed to provide psychiatry with a more scientifically based classification system, based on neurobiology. However, this goal could not be achieved in the absence of more convincing data. This is why the manual is not dramatically different from its predecessors. Attempts to make diagnoses dimensional, to put them in spectra, and to relate them to changes in the brain are premature at our present state of knowledge. While the National Institute of Mental Health has developed its own system. However, we do not have the data at this point to develop a classification that would be consistent with neurobiology. Moreover, diagnosis need not reduce complex mental phenomena to a cellular or endophenotypic level.


Minerva ◽  
1976 ◽  
Vol 14 (2) ◽  
pp. 209-224 ◽  
Author(s):  
Herbert G. Grubel
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document