scholarly journals Thinking through other minds: A variational approach to cognition and culture

Author(s):  
Samuel P. L. Veissière ◽  
Axel Constant ◽  
Maxwell J. D. Ramstead ◽  
Karl J. Friston ◽  
Laurence J. Kirmayer

Abstract The processes underwriting the acquisition of culture remain unclear. How are shared habits, norms, and expectations learned and maintained with precision and reliability across large-scale sociocultural ensembles? Is there a unifying account of the mechanisms involved in the acquisition of culture? Notions such as “shared expectations,” the “selective patterning of attention and behaviour,” “cultural evolution,” “cultural inheritance,” and “implicit learning” are the main candidates to underpin a unifying account of cognition and the acquisition of culture; however, their interactions require greater specification and clarification. In this article, we integrate these candidates using the variational (free-energy) approach to human cognition and culture in theoretical neuroscience. We describe the construction by humans of social niches that afford epistemic resources called cultural affordances. We argue that human agents learn the shared habits, norms, and expectations of their culture through immersive participation in patterned cultural practices that selectively pattern attention and behaviour. We call this process “thinking through other minds” (TTOM) – in effect, the process of inferring other agents’ expectations about the world and how to behave in social context. We argue that for humans, information from and about other people's expectations constitutes the primary domain of statistical regularities that humans leverage to predict and organize behaviour. The integrative model we offer has implications that can advance theories of cognition, enculturation, adaptation, and psychopathology. Crucially, this formal (variational) treatment seeks to resolve key debates in current cognitive science, such as the distinction between internalist and externalist accounts of theory of mind abilities and the more fundamental distinction between dynamical and representational accounts of enactivism.

Author(s):  
Edward Slingerland

Drawing upon cutting-edge knowledge and techniques from the sciences and digital humanities, Mind and Body in Early China employs the lens of mind-body concepts to critique Orientalist accounts of early China. Views of China as the radical, “holistic” Other are unsupportable for a variety of reasons. The idea that the early Chinese saw no qualitative difference between mind and body (the “strong” holist view) has long been contradicted by traditional archaeological and qualitative textual evidence. New digital humanities methods, such as large-scale textual analysis, make this position even less tenable. Finally, a large body of empirical evidence suggests that “weak” mind-body dualism is a psychological universal, and that human sociality would be fundamentally impossible without it. More broadly, this book argues that the humanities need to move beyond social constructivist views of culture and embrace instead a view of human cognition and culture that integrates the sciences and the humanities. Methodologically, it attempts to broaden the scope of humanistic methodologies by employing team-based qualitative coding and computer-aided “distant reading” of texts, while also drawing upon current best understanding of human cognition to transform the basic interpretative starting point. It has implications for anyone interested in comparative religion, early China, cultural studies, digital humanities, or science-humanities integration.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 495d-495
Author(s):  
J. Farias-Larios ◽  
A. Michel-Rosales

In Western Mexico, melon production depends on high-input systems to maximize yield and product quality. Tillage, plasticulture, fumigation with methyl bromide, and fertigation, are the principal management practices in these systems. However, at present several problems has been found: pests as sweetpotato whitefly (Bemisia tabaci Gennadius), aphids (Myzus and Aphis), leafminer (Liryomiza sativae); diseases as Fusarium, Verticilium, and Pseudoperenospora, and weeds demand high pesticide utilization and labor. There is a growing demand for alternative cultural practices, with an emphasis on reducing off-farm input labor and chemicals. Our research is based on use of organic mulches, such as: rice straw, mature maize leaves, banana leaves, sugarcane bagasse, coconut leaves, and living mulches with annual legume cover crop in melons with crop rotation, such as: Canavalia, Stilozobium, Crotalaria, and Clitoria species. Also, inoculations with mycorrhizal arbuscular fungi for honeydew and cantaloupe melon seedlings production are been assayed in greenhouse conditions for a transplant system. The use of life barriers with sorghum, marigold, and other aromatic native plants in conjunction with a colored yellow systems traps for monitoring pests is being studied as well. While that the pest control is based in commercial formulations of Beauveria bassiana for biological control. The first results of this research show that the Glomus intraradices, G. fasciculatum, G. etunicatum, and G. mosseae reached 38.5%, 33.5%, 27.0%, and 31.0% of root infection levels, respectively. Honeydew melons production with rice and corn straw mulches shows an beneficial effect with 113.30 and 111.20 kg/plot of 10 m2 compared with bare soil with 100.20 kg. The proposed system likely also lowers production cost and is applicable to small- and large-scale melon production.


2012 ◽  
Vol 20 (2) ◽  
pp. 275-294 ◽  
Author(s):  
Stephen J. Cowley

To view language as a cultural tool challenges much of what claims to be linguistic science while opening up a new people-centred linguistics. On this view, how we speak, think and act depends on, not just brains (or minds), but also cultural traditions. Yet, Everett is conservative: like others trained in distributional analysis, he reifies ‘words’. Though rejecting inner languages and grammatical universals, he ascribes mental reality to a lexicon. Reliant as he is on transcriptions, he takes the cognitivist view that brains represent word-forms. By contrast, in radical embodied cognitive theory, bodily dynamics themselves act as cues to meaning. Linguistic exostructures resemble tools that constrain how people concert acting-perceiving bodies. The result is unending renewal of verbal structures: like artefacts and institutions, they function to sustain a species-specific cultural ecology. As Ross (2007) argues, ecological extensions make human cognition hypersocial. When we link verbal patterns with lived experience, we communicate and cognise by fitting action/perception to cultural practices that anchor human meaning making.


2016 ◽  
Author(s):  
Timothy N. Rubin ◽  
Oluwasanmi Koyejo ◽  
Krzysztof J. Gorgolewski ◽  
Michael N. Jones ◽  
Russell A. Poldrack ◽  
...  

AbstractA central goal of cognitive neuroscience is to decode human brain activity--i.e., to infer mental processes from observed patterns of whole-brain activation. Previous decoding efforts have focused on classifying brain activity into a small set of discrete cognitive states. To attain maximal utility, a decoding framework must be open-ended, systematic, and context-sensitive--i.e., capable of interpreting numerous brain states, presented in arbitrary combinations, in light of prior information. Here we take steps towards this objective by introducing a Bayesian decoding framework based on a novel topic model---Generalized Correspondence Latent Dirichlet Allocation---that learns latent topics from a database of over 11,000 published fMRI studies. The model produces highly interpretable, spatially-circumscribed topics that enable flexible decoding of whole-brain images. Importantly, the Bayesian nature of the model allows one to “seed” decoder priors with arbitrary images and text--enabling researchers, for the first time, to generative quantitative, context-sensitive interpretations of whole-brain patterns of brain activity.


2020 ◽  
Author(s):  
Joshua Conrad Jackson ◽  
Joseph Watts ◽  
Johann-Mattis List ◽  
Ryan Drabble ◽  
Kristen Lindquist

Humans have been using language for thousands of years, but psychologists seldom consider what natural language can tell us about the mind. Here we propose that language offers a unique window into human cognition. After briefly summarizing the legacy of language analyses in psychological science, we show how methodological advances have made these analyses more feasible and insightful than ever before. In particular, we describe how two forms of language analysis—comparative linguistics and natural language processing—are already contributing to how we understand emotion, creativity, and religion, and overcoming methodological obstacles related to statistical power and culturally diverse samples. We summarize resources for learning both of these methods, and highlight the best way to combine language analysis techniques with behavioral paradigms. Applying language analysis to large-scale and cross-cultural datasets promises to provide major breakthroughs in psychological science.


2016 ◽  
Vol 119 (suppl_1) ◽  
Author(s):  
Jun Zou ◽  
Diana Tran ◽  
Angelo Pelonero ◽  
Rahul C Deo

Background: We recently discovered a conserved internal promoter in the Titin gene, which explains why truncating mutations in the C-terminal two thirds of the zebrafish ttna protein result in more severe disease, recapitulating a puzzling observation in human dilated cardiomyopathy (DCM) patients. Here we focus on the contribution of alternative splicing to the DCM phenotype, both in zebrafish Titin truncation mutants and in the context of an integrative model for Titin mutation interpretation. Methods and Results: Using CRISPR/Cas9, we disrupted an alternatively spliced exon in the I-band of Titin , normally present in zebrafish heart but absent in skeletal muscle. The resulting mutants had, on average, a milder cardiac phenotype than those with mutations in constitutive exons but also showed striking inter-sibling variability in disease expression, ranging from intact cardiac blood flow to severe early demise. The mutant exon demonstrated nonsense-altered splicing and disease severity paralleled selective deficiency in Titin transcript level, implying that variability in mutated exon inclusion coupled with nonsense-mediated decay (NMD) modulated phenotype. We next amassed Titin mutation information from 1785 human DCM cases and >68,000 controls to model mutation distribution and found three variance components 1) splicing; 2) internal isoform disruption; and 3) targeting of the C-terminal 2000 amino acids. An integrated model demonstrated strong predictive performance with an area under the receiver operating characteristic curve of 0.79 and correctly identified the highest risk individuals. Conclusions: We conclude that genetically targeted models and large-scale human data can be complementary in overcoming the challenges of genetic data interpretation.


Author(s):  
Kevin N. Laland

This chapter traces the evolution of human civilization from nomadic hunter-gatherer societies to the advent of agriculture and its large-scale impacts on the world. It describes this history in three ages of adaptive evolution. First, there was the age in which biological evolution dominated, in which we adapted to the circumstances of life in a manner no different from every other creature. Second came the age when gene–culture coevolution was in the ascendency. Through cultural activities, our ancestors set challenges to which they adapted biologically. In doing so, they released the brake that the relatively slow rate of independent environmental change imposes on other species. The results are higher rates of morphological evolution in humans compared to other mammals, with human genetic evolution reported as accelerating more than a hundredfold over the last 40,000 years. Now we live in the third age, where cultural evolution dominates. Cultural practices provide humanity with adaptive challenges, but these are then solved through further cultural activity, before biological evolution gets moving.


2010 ◽  
Vol 56 (No. 5) ◽  
pp. 195-208 ◽  
Author(s):  
D. Vavříček ◽  
J. Pecháček ◽  
P. Jonák ◽  
P. Samec

The plateau of the Krušné hory Mts. belongs to areas that suffered the greatest damage caused by air-pollution stresses in Europe. A part of cultural practices aimed at the reconstruction of local mountain forests was the inconsiderate use of bulldozer technologies for the preparation of sites for forest stand restoration. In the course of large-scale scarification the top-soil horizons were moved into line windrows, which caused marked degradation of the soil environment. The present revitalization of the soil environment is based on the principle of spreading these man-made windrows. Experimental plots were established in localities affected by scarification; the organomineral material from windrows was superimposed on them and subsequently they were reforested with Norway spruce (Picea abies [L.] Karst.). In 2005 the point application of fertilizer tablets of Silvamix type in three treatments and calcic dolomite was performed into the rhizosphere of plants. Before fertilization and after three years of the experiment soil samples were taken from the organomineral zone of the root balls of plants, and the condition of the soil environment on spread windrows and changes in pedochemical properties as a result of applied fertilization were evaluated. Three years after the windrow spreading the content of the majority of soil macrobiogenic elements (N, K, Ca, Mg) is at the level of medium-high to high reserves, and only the low phosphorus reserves pose a certain hazard. The organomineral substrate of spread windrows is a suitable growth environment for the root systems of target tree species. The proportion of humus substances is the most important factor in spread windrows from which the characteristics of the other parameters of soil are derived. Along with the higher proportion of humus substances in Špičák locality significantly higher reserves of major macrobiogenic elements (N, P, K, Ca, Mg) were determined. The applied fertilizers of Silvamix type significantly increased the reserves of soil P, K, Ca, Mg and are a suitable means for the stimulation of spruce plantations in the restored environment of the Krušné hory Mts. Silvamix Forte fertilizer tablets are the most complex fertilizer with the most balanced effects that significantly increases the reserves of soil P, Mg and K. This fertilizer has a high effect on an increase in the reserves of soil phosphorus that may be deficient in conditions of spread windrows. Silvamix R is the most efficient fertilizer to increase potassium reserves. A positive effect of calcic dolomite on an increase in Ca and Mg content was observed while no such effect on the other elements was recorded.  


2017 ◽  
Vol 4 (4) ◽  
pp. 160912 ◽  
Author(s):  
P. Grindrod ◽  
T. E. Lee

We consider a directed graph model for the human brain’s neural architecture that is based on small scale, directed, strongly connected sub-graphs (SCGs) of neurons, that are connected together by a sparser mesoscopic network. We assume transmission delays within neuron-to-neuron stimulation, and that individual neurons have an excitable-refractory dynamic, with single firing ‘spikes’ occurring on a much faster time scale than that of the transmission delays. We demonstrate numerically that the SCGs typically have attractors that are equivalent to continual winding maps over relatively low-dimensional tori, thus representing a limit on the range of distinct behaviour. For a discrete formulation, we conduct a large-scale survey of SCGs of varying size, but with the same local structure. We demonstrate that there may be benefits (increased processing capacity and efficiency) in brains having evolved to have a larger number of small irreducible sub-graphs, rather than few, large irreducible sub-graphs. The network of SCGs could be thought of as an architecture that has evolved to create decisions in the light of partial or early incoming information. Hence the applicability of the proposed paradigm to underpinning human cognition.


2000 ◽  
Vol 12 (supplement 1) ◽  
pp. 89-107 ◽  
Author(s):  
Julie R. Korenberg ◽  
Xiao-Ning Chen ◽  
Hamao Hirota ◽  
Zona Lai ◽  
Ursula Bellugi ◽  
...  

Williams syndrome (WMS) is a most compelling model of human cognition, of human genome organization, and of evolution. Due to a deletion in chromosome band 7q11.23, subjects have cardiovascular, connective tissue, and neurode-velopmental deficits. Given the striking peaks and valleys in neurocognition including deficits in visual-spatial and global processing, preserved language and face processing, hypersociability, and heightened affect, the goal of this work has been to identify the genes that are responsible, the cause of the deletion, and its origin in primate evolution. To do this, we have generated an integrated physical, genetic, and transcriptional map of the WMS and flanking regions using multicolor metaphase and interphase fluorescence in situ hybridization (FISH) of bacterial artificial chromosomes (BACs) and P1 artificial chromosomes (PACs), BAC end sequencing, PCR gene marker and microsatellite, large-scale sequencing, cDNA library, and database analyses. The results indicate the genomic organization of the WMS region as two nested duplicated regions flanking a largely single-copy region. There are at least two common deletion breakpoints, one in the centromeric and at least two in the telomeric repeated regions. Clones anchoring the unique to the repeated regions are defined along with three new pseudogene families. Primate studies indicate an evolutionary hot spot for chromosomal inversion in the WMS region. A cognitive phenotypic map of WMS is presented, which combines previous data with five further WMS subjects and three atypical WMS subjects with deletions; two larger (deleted for D7S489L) and one smaller, deleted for genes telomeric to FZD9, through LIMK1, but not WSCR1 or telomeric. The results establish regions and consequent gene candidates for WMS features including mental retardation, hypersociability, and facial features. The approach provides the basis for defining pathways linking genetic underpinnings with the neuroanatomical, functional, and behavioral consequences that result in human cognition.


Sign in / Sign up

Export Citation Format

Share Document