Applications of the Melnikov method to twist maps in higher dimensions using the variational approach

1997 ◽  
Vol 17 (2) ◽  
pp. 445-462 ◽  
Author(s):  
HECTOR E. LOMELI

We work with symplectic diffeomorphisms of the $n$-annulus ${\Bbb{A}}^n=T^*({\Bbb{R}}^n/{\Bbb{Z}}^n)$. Using the variational approach of Aubry and Mather, we are able to give a local description of the stable (and unstable) manifold for a hyperbolic fixed point. We use this in order to get a Melnikov-like formula for exact symplectic twist maps. This formula involves an infinite series that could be computed in some specific cases. We apply our formula to prove the existence of heteroclinic orbits for a family of twist maps in ${\Bbb{R}}^4$.

2001 ◽  
Vol 11 (09) ◽  
pp. 2451-2461
Author(s):  
TIFEI QIAN

The variational method has shown many advantages over the geometric method in proving the existence of connecting orbits since it requires much weaker hyperbolicity and less smoothness. Many results known to be difficult to obtain by the geometric method can now be obtained by a variational principle with relative ease. In particular, a variational principle provides a constructive approach to the existence of heteroclinic orbits. In this paper a variational principle is used to construct a heteroclinic orbit between an adjacent minimal pair of fixed points for monotone twist maps on (ℝ/ℤ) × ℝ. Application of our results to a standard map is also given.


Author(s):  
X. Tong ◽  
B. Tabarrok

Abstract In this paper the global motion of a rigid body subject to small periodic torques, which has a fixed direction in the body-fixed coordinate frame, is investigated by means of Melnikov’s method. Deprit’s variables are introduced to transform the equations of motion into a form describing a slowly varying oscillator. Then the Melnikov method developed for the slowly varying oscillator is used to predict the transversal intersections of stable and unstable manifolds for the perturbed rigid body motion. It is shown that there exist transversal intersections of heteroclinic orbits for certain ranges of parameter values.


1998 ◽  
Vol 18 (3) ◽  
pp. 725-730
Author(s):  
KARL FRIEDRICH SIBURG

According to a theorem of Moser, every monotone twist map $\varphi$ on the cylinder ${\Bbb S}^1\times {\Bbb R}$, which is integrable outside a compact set, is the time-1-map $\varphi_H^1$ of a fibrewise convex Hamiltonian $H$. In this paper we prove that if this particular flow $\varphi_H^t$ is also integrable outside a compact set, then $\varphi$ has to be integrable on the whole cylinder (and vice versa, of course). From this dynamical point of view, integrable twist maps appear to be quite rigid.As is shown in the appendix, an analogous rigidity result becomes trivial in higher dimensions.


1996 ◽  
Vol 16 (1) ◽  
pp. 51-86 ◽  
Author(s):  
Giovanni Forni

AbstractThis paper represents a contribution to the variational approach to the understanding of the dynamics of exact area-preserving monotone twist maps of the annulus, currently known as the Aubry–Mather theory. The method introduced by Mather to construct invariant measures of Denjoy type is extended to produce almost-periodic measures, having arbitrary rationally independent frequencies, and positive entropy measures, supported within the gaps of Aubry–Mather sets which do not lie on invariant curves. This extension is based on a generalized version of the Percival's Lagrangian and on a new minimization procedure, which also gives a simplified proof of the basic existence theorem for the Aubry–Mather sets.


2013 ◽  
Vol 23 (04) ◽  
pp. 1350074 ◽  
Author(s):  
N. HAN ◽  
Q. J. CAO ◽  
M. WIERCIGROCH

In this paper, we investigate the nonlinear behavior of the recently proposed rotating pendulum which is a cylindrically nonlinear system with irrational type having smooth and discontinuous characteristics depending on the value of a smoothness parameter. We introduce a cylindrical approximate system whose analytical solutions can be obtained successfully to reflect the nature of the original system without the barrier of irrationalities. Furthermore, Melnikov method is employed to detect the chaotic thresholds for the homoclinic orbits of the second-type, a pair of homoclinic orbits of the first and second-type and the double heteroclinic orbits under the perturbation of viscous damping and external harmonic forcing within the smooth regime. Numerical simulations show the efficiency of the proposed method and the results presented herein this paper demonstrate the predicated chaotic attractors of pendulum-type, SD-type and their mixture depending on the coupling of the nonlinearities.


2009 ◽  
Vol 19 (07) ◽  
pp. 2181-2191 ◽  
Author(s):  
HOPE L. WEISS ◽  
ANDREW J. SZERI

Nested invariant 3-tori surrounding a torus braid of elliptic type are found to exist in a model of a fluid flow with quasiperiodic forcing. The Hamiltonian describing the system is given by the superposition of two steady stream functions, one with an elliptic fixed point and the other with a coincident hyperbolic fixed point. The superposition, modulated by two incommensurate frequencies, yields an elliptic torus braid at the location of the fixed point. The system is suspended in a four-dimensional phase space (two space and two phase directions). To analyze this system we define two three-dimensional, global, Poincaré sections of the flow. The coherent structures (cross-sections of nested 2 tori) are found each to have a fractal dimensional of two, in each Poincaré cross-section. This framework has applications to tidal and other mixing problems of geophysical interest.


1977 ◽  
Vol 67 ◽  
pp. 41-52 ◽  
Author(s):  
Masahiro Kurata

Hartman proved that a diffeomorphism is topologically conjugate to a linear map on a neighbourhood of a hyperbolic fixed point ([3]). In this paper we study the topological conjugacy problem of a diffeomorphism on a neighbourhood of a hyperbolic set, and prove that for any hyperbolic set there is an arbitrarily slight extension to which a sub-shift of finite type is semi-conjugate.


1995 ◽  
Vol 15 (6) ◽  
pp. 1045-1059 ◽  
Author(s):  
Ray Brown

AbstractWe show, using elementary methods, that for 0 < a the measure-preserving, orientation-preserving Hénon map, H, has a horseshoe. This improves on the result of Devaney and Nitecki who have shown that a horseshoe exists in this map for a ≥ 8. For a > 0, we also prove the conjecture of Devaney that the first symmetric homoclinic point is transversal.To obtain our results, we show that for a branch, Cu, of the unstable manifold of a hyperbolic fixed point of H, Cu crosses the line y = − x and that this crossing is a homoclinic point, χc. This has been shown by Devaney, but we obtain the crossing using simpler methods. Next we show that if the crossing of Wu(p) and Ws(p) at χc is degenerate then the slope of Cu at this crossing is one. Following this we show that if χc is a degenerate homoclinic its x-coordinate must be greater than l/(2a). We then derive a contradiction from this by showing that the slope of Cu at H-1(χc) must be both positive and negative, thus we conclude that χc is transversal.Our approach uses a lemma that gives a recursive formula for the sign of curvature of the unstable manifold. This lemma, referred to as ‘the curvature lemma’, is the key to reducing the proof to elementary methods. A curvature lemma can be derived for a very broad array of maps making the applicability of these methods very general. Further, since curvature is the strongest differentiability feature needed in our proof, the methods work for maps of the plane which are only C2.


Sign in / Sign up

Export Citation Format

Share Document