scholarly journals 20. Positions and Motions of Minor Planets, Comets and Satellites

1982 ◽  
Vol 18 (1) ◽  
pp. 195-210
Author(s):  
E Roemer

An avalanche of discoveries pertaining to the satellite and ring systems of Jupiter and Saturn followed from the encounters of Pioneer 11 with Saturn, of Voyagers 1 and 2 with both Jupiter and Saturn, and from the passage of the Earth through the Saturn ring plane, all of which occurred during the triennium. The first comet discovery from a spacecraft also occurred during the same interval, a coronagraph experiment on the satellite P78-1 apparently catching a Kreutz sungrazer in the last hours before it impacted the Sun on 1979 August 30. Several successfully observed occultations of stars by the Uranian ring system, by minor planets, and possibly by satellites of Neptune and Pluto testify to efforts inspired by the Commission’s Working Group on Prediction of Occultations.

1984 ◽  
Vol 75 ◽  
pp. 461-469 ◽  
Author(s):  
Robert W. Hart

ABSTRACTThis paper models maximum entropy configurations of idealized gravitational ring systems. Such configurations are of interest because systems generally evolve toward an ultimate state of maximum randomness. For simplicity, attention is confined to ultimate states for which interparticle interactions are no longer of first order importance. The planets, in their orbits about the sun, are one example of such a ring system. The extent to which the present approximation yields insight into ring systems such as Saturn's is explored briefly.


1986 ◽  
Vol 114 ◽  
pp. 69-69
Author(s):  
P. Bretagnon

Up to now we have been dealing with the construction of entirely analytical planetary theories such as VS0P82 (Bretagnon, 1982) and T0P82 (Simon, 1983). These theories take into account the whole of the newtonian perturbations of nine point masses: the Sun, the Earth-Moon barycenter, the planets Mercury, Venus, Mars, Jupiter, Saturn, Uranus and Neptune. They also take into account perturbations due to some minor planets, to the action of the Moon and the relativistic effects. The perturbations of these last three types are in a very simple way under analytical form but they considerably increase the computations when introduced in the numerical integration programs.


1993 ◽  
Vol 156 ◽  
pp. 25-30
Author(s):  
B. Morando ◽  
F. Mignard

In addition to its astrometric capabilities the Hipparcos main detector proves to be a good phototometer. The main features of the photometric reduction applied to minor planets are outlined. The apparent magnitude measured by Hipparcos is transformed into absolute magnitude after corrections for the distance to the sun, the earth and for the phase effect, are applied. We show that the remaining signal contains information on the rotational properties of the planets.


1984 ◽  
Vol 75 ◽  
pp. 75-86
Author(s):  
Bruno Sicardy ◽  
Pierre Laques ◽  
Jean Lecacheux ◽  
André Brahic ◽  
Gérard Wlerick

ABSTRACTThe reductions of electronographic plates taken during ground-based observations of Saturn at the times of the transits of the Sun and the Earth through the ring plane (March 1980) are interpreted.1. The variation of the ring’s brightness vs. elevation angle around Earth’s crossing is different from the variation around Sun’s crossing. Furthermore, the ring’s brightness increases with the distance to Saturn’s centre around Earth’s crossing and decreases around Sun’s crossing. This allows to derive the illumination of the Saturn’s disc on the rings and indicates that the rings do not behave like an homogeneous scattering layer when observed or lit almost edge-on.


1997 ◽  
Vol 161 ◽  
pp. 761-776 ◽  
Author(s):  
Claudio Maccone

AbstractSETI from space is currently envisaged in three ways: i) by large space antennas orbiting the Earth that could be used for both VLBI and SETI (VSOP and RadioAstron missions), ii) by a radiotelescope inside the Saha far side Moon crater and an Earth-link antenna on the Mare Smythii near side plain. Such SETIMOON mission would require no astronaut work since a Tether, deployed in Moon orbit until the two antennas landed softly, would also be the cable connecting them. Alternatively, a data relay satellite orbiting the Earth-Moon Lagrangian pointL2would avoid the Earthlink antenna, iii) by a large space antenna put at the foci of the Sun gravitational lens: 1) for electromagnetic waves, the minimal focal distance is 550 Astronomical Units (AU) or 14 times beyond Pluto. One could use the huge radio magnifications of sources aligned to the Sun and spacecraft; 2) for gravitational waves and neutrinos, the focus lies between 22.45 and 29.59 AU (Uranus and Neptune orbits), with a flight time of less than 30 years. Two new space missions, of SETI interest if ET’s use neutrinos for communications, are proposed.


1984 ◽  
Vol 75 ◽  
pp. 743-759 ◽  
Author(s):  
Kerry T. Nock

ABSTRACTA mission to rendezvous with the rings of Saturn is studied with regard to science rationale and instrumentation and engineering feasibility and design. Future detailedin situexploration of the rings of Saturn will require spacecraft systems with enormous propulsive capability. NASA is currently studying the critical technologies for just such a system, called Nuclear Electric Propulsion (NEP). Electric propulsion is the only technology which can effectively provide the required total impulse for this demanding mission. Furthermore, the power source must be nuclear because the solar energy reaching Saturn is only 1% of that at the Earth. An important aspect of this mission is the ability of the low thrust propulsion system to continuously boost the spacecraft above the ring plane as it spirals in toward Saturn, thus enabling scientific measurements of ring particles from only a few kilometers.


2019 ◽  
Vol 15 (1) ◽  
pp. 73-77
Author(s):  
Valentina V. Ukraintseva ◽  
Keyword(s):  
The Sun ◽  

Author(s):  
David Fisher

There are eight columns in the Periodic Table. The eighth column is comprised of the rare gases, so-called because they are the rarest elements on earth. They are also called the inert or noble gases because, like nobility, they do no work. They are colorless, odorless, invisible gases which do not react with anything, and were thought to be unimportant until the early 1960s. Starting in that era, David Fisher has spent roughly fifty years doing research on these gases, publishing nearly a hundred papers in the scientific journals, applying them to problems in geophysics and cosmochemistry, and learning how other scientists have utilized them to change our ideas about the universe, the sun, and our own planet. Much Ado about (Practically) Nothing will cover this spectrum of ideas, interspersed with the author's own work which will serve to introduce each gas and the important work others have done with them. The rare gases have participated in a wide range of scientific advances-even revolutions-but no book has ever recorded the entire story. Fisher will range from the intricacies of the atomic nucleus and the tiniest of elementary particles, the neutrino, to the energy source of the stars; from the age of the earth to its future energies; from life on Mars to cancer here on earth. A whole panoply that has never before been told as an entity.


Author(s):  
Charles Dickens ◽  
Dennis Walder

Dombey and Son ... Those three words conveyed the one idea of Mr. Dombey's life. The earth was made for Dombey and Son to trade in, and the sun and moon were made to give them light.' The hopes of Mr Dombey for the future of his shipping firm are centred on his delicate son Paul, and Florence, his devoted daughter, is unloved and neglected. When the firm faces ruin, and Dombey's second marriage ends in disaster, only Florence has the strength and humanity to save her father from desolate solitude. This new edition contains Dickens's prefaces, his working plans, and all the original illustrations by ‘Phiz’. The text is that of the definitive Clarendon edition. It has been supplemented by a wide-ranging Introduction, highlighting Dickens's engagement with his times, and the touching exploration of family relationships which give the novel added depth and relevance.


Among the celestial bodies the sun is certainly the first which should attract our notice. It is a fountain of light that illuminates the world! it is the cause of that heat which main­tains the productive power of nature, and makes the earth a fit habitation for man! it is the central body of the planetary system; and what renders a knowledge of its nature still more interesting to us is, that the numberless stars which compose the universe, appear, by the strictest analogy, to be similar bodies. Their innate light is so intense, that it reaches the eye of the observer from the remotest regions of space, and forcibly claims his notice. Now, if we are convinced that an inquiry into the nature and properties of the sun is highly worthy of our notice, we may also with great satisfaction reflect on the considerable progress that has already been made in our knowledge of this eminent body. It would require a long detail to enumerate all the various discoveries which have been made on this subject; I shall, therefore, content myself with giving only the most capital of them.


Sign in / Sign up

Export Citation Format

Share Document