scholarly journals Compact Objects in Supernova Remnants

1996 ◽  
Vol 145 ◽  
pp. 399-406
Author(s):  
Roger A. Chevalier

Core collapse in very massive stars can lead to a central black hole that swallows the rest of the star and in less massive stars to a central neutron star and explosion. There is probably an intermediate mass range that gives an explosion and a central black hole; supernova remnants with no observable central object are candidates. The association of pulsars with Type II supernovae gives an estimate of the pulsar power to be expected in a supernova, but the uncertainty in the initial pulsar periods gives a wide range in possible powers. The relativistic wind bubble model for the Crab Nebula has steadily developed and there are now predictions regarding particle acceleration in the optical wisps. The bubble model with expansion into supernova gas can also be applied to other young pulsar nebulae.

2018 ◽  
Vol 618 ◽  
pp. A110 ◽  
Author(s):  
J. Bodensteiner ◽  
D. Baade ◽  
J. Greiner ◽  
N. Langer

Context. Recent studies show that more than 70% of massive stars do not evolve as effectively single stars, but as members of interacting binary systems. The evolution of these stars is thus strongly altered compared to similar but isolated objects. Aims. We investigate the occurrence of parsec-scale mid-infrared nebulae around early-type stars. If they exist over a wide range of stellar properties, one possible overarching explanation is non-conservative mass transfer in binary interactions, or stellar mergers. Methods. For ∼3850 stars (all OBA stars in the Bright Star Catalogue (BSC), Be stars, BeXRBs, and Be+sdO systems), we visually inspect WISE 22 μm images. Based on nebular shape and relative position, we distinguish five categories: offset bow shocks structurally aligned with the stellar space velocity, unaligned offset bow shocks, and centered, unresolved, and not classified nebulae. Results. In the BSC, we find that 28%, 13%, and 0.4% of all O, B, and A stars, respectively, possess associated infrared (IR) nebulae. Additionally, 34/234 Be stars, 4/72 BeXRBs, and 3/17 Be+sdO systems are associated with IR nebulae. Conclusions. Aligned or unaligned bow shocks result from high relative velocities between star and interstellar medium (ISM) that are dominated by the star or the ISM, respectively. About 13% of the centered nebulae could be bow shocks seen head- or tail-on. For the rest, the data disfavor explanations as remains of parental disks, supernova remnants of a previous companion, and dust production in stellar winds. The existence of centered nebulae also at high Galactic latitudes strongly limits the global risk of coincidental alignments with condensations in the ISM. Mass loss during binary evolution seems a viable mechanism for the formation of at least some of these nebulae. In total, about 29% of the IR nebulae (2% of all OBA stars in the BSC) may find their explanation in the context of binary evolution.


1983 ◽  
Vol 101 ◽  
pp. 299-320 ◽  
Author(s):  
K. W. Weiler

While reviewing and systematizing the properties of the class of supernova remnants resembling the Crab Nebula it has been found that supernova remnants can be split into three morphological groups – Class S (shells), Class P (plerions), and Class C (combinations) – where the Class C objects appear to represent a new and especially interesting classification. In this overview, the identifying properties of all three classes are defined. Because the large Class S has been studied in detail many times previously, it is not discussed further here. For the smaller Classes P and C, the individual members and suspected members are presented and their properties reviewed. Finally, an origin and evolution for each class is suggested.


1971 ◽  
Vol 46 ◽  
pp. 394-406
Author(s):  
F. Pacini

The Crab Nebula pulsar conforms to the model of a rotating magnetised neutron star in the rate of energy generation and the exponent of the rotation law.It is suggested that the main pulse is due to electrons and the precursor to protons. Both must radiate in coherent bunches. Optical and X-ray radiation is by the synchrotron process.The wisps observed in the Nebula may represent the release of an instability storing about 1043 erg and 1047–48 particles.Finally, some considerations are made about the general relation between supernova remnants and rotating neutron stars.


1987 ◽  
Vol 125 ◽  
pp. 129-129
Author(s):  
J.L. Caswell ◽  
M.J. Kesteven ◽  
R.F. Haynes ◽  
D.K. Milne ◽  
M.M. Komesaroff ◽  
...  

Long after a supernova event, the stellar core (neutron star) may continue to excite an extended remnant of ejecta surrounding it, as in the case of the Crab nebula. In contrast, the more common shell supernova remnants (SNRs) appear unaffected by any embedded neutron star.


2019 ◽  
Vol 488 (2) ◽  
pp. 2825-2835 ◽  
Author(s):  
Giacomo Fragione ◽  
Nathan W C Leigh ◽  
Rosalba Perna

ABSTRACT Nuclear star clusters that surround supermassive black holes (SMBHs) in galactic nuclei are thought to contain large numbers of black holes (BHs) and neutron stars (NSs), a fraction of which form binaries and could merge by Kozai–Lidov oscillations (KL). Triple compact objects are likely to be present, given what is known about the multiplicity of massive stars, whose life ends either as an NS or a BH. In this paper, we present a new possible scenario for merging BHs and NSs in galactic nuclei. We study the evolution of a triple black hole (BH) or neutron star (NS) system orbiting an SMBH in a galactic nucleus by means of direct high-precision N-body simulations, including post-Newtonian terms. We find that the four-body dynamical interactions can increase the KL angle window for mergers compared to the binary case and make BH and NS binaries merge on shorter time-scales. We show that the merger fraction can be up to ∼5–8 times higher for triples than for binaries. Therefore, even if the triple fraction is only ∼10–$20\rm{\,per\,cent}$ of the binary fraction, they could contribute to the merger events observed by LIGO/VIRGO in comparable numbers.


2004 ◽  
Vol 218 ◽  
pp. 221-224
Author(s):  
John R. Dickel ◽  
Shiya Wang

Several Crab-type supernova remnants appear to have very bright non-thermal X-ray cores just around the pulsar or expected pulsar. This X-ray brightness is often not matched by a corresponding increase in radio emission. The best example of this phenomenon is in N157B in the LMC. G21.5−0.9 and possibly 3C 58 also show it while the Crab Nebula and 0540−69.3 do not. Some method to enhance the higher energy particles must be present in these objects.


2006 ◽  
Vol 2 (S238) ◽  
pp. 241-246
Author(s):  
Sachiko Tsuruta ◽  
Takuya Ohkubo ◽  
Hideyuki Umeda ◽  
Keiichi Maeda ◽  
Ken'ichi Nomoto ◽  
...  

AbstractWe calculate evolution, collapse, explosion, and nucleosynthesis of Population III very massive stars with 500 M⊙ and 1000 M⊙. It was found that both 500 M⊙ and 1000 M⊙ models enter the region of pair-instability but continue to undergo core collapse to black holes. For moderately aspherical explosions, the patterns of nucleosynthesis match the observational data of intergalactic and intercluster medium and hot gases in M82, better than models involving hypernovae and pair instability supernovae.Our results suggest that explosions of Population III core-collapse very massive stars contribute significantly to the chemical evolution of gases in clusters of galaxies. The final black hole masses are about 500 M⊙ for our most massive 1000 M⊙ models. This result may support the view that Population III very massive stars are responsible for the origin of intermediate mass black holes which were recently reported to be discovered.


1999 ◽  
Vol 124 (1) ◽  
pp. 181-193 ◽  
Author(s):  
B. J. Wallace ◽  
T. L. Landecker ◽  
P. M. W. Kalberla ◽  
A. R. Taylor

2021 ◽  
Vol 2021 (12) ◽  
pp. 047
Author(s):  
Felipe F. Freitas ◽  
Carlos A.R. Herdeiro ◽  
António P. Morais ◽  
António Onofre ◽  
Roman Pasechnik ◽  
...  

Abstract We construct families, and concrete examples, of simple extensions of the Standard Model that can yield ultralight real or complex vectors or scalars with potential astrophysical relevance. Specifically, the mass range for these putative fundamental bosons (∼ 10-10-10-20 eV) would lead dynamically to both new non-black hole compact objects (bosonic stars) and new non-Kerr black holes, with masses of ∼ M⊙ to ∼ 1010 M⊙, corresponding to the mass range of astrophysical black hole candidates (from stellar mass to supermassive). For each model, we study the properties of the mass spectrum and interactions after spontaneous symmetry breaking, discuss its theoretical viability and caveats, as well as some of its potential and most relevant phenomenological implications linking them to the physics of compact objects.


Sign in / Sign up

Export Citation Format

Share Document