scholarly journals Infrared nebulae around bright massive stars as indicators for binary interactions

2018 ◽  
Vol 618 ◽  
pp. A110 ◽  
Author(s):  
J. Bodensteiner ◽  
D. Baade ◽  
J. Greiner ◽  
N. Langer

Context. Recent studies show that more than 70% of massive stars do not evolve as effectively single stars, but as members of interacting binary systems. The evolution of these stars is thus strongly altered compared to similar but isolated objects. Aims. We investigate the occurrence of parsec-scale mid-infrared nebulae around early-type stars. If they exist over a wide range of stellar properties, one possible overarching explanation is non-conservative mass transfer in binary interactions, or stellar mergers. Methods. For ∼3850 stars (all OBA stars in the Bright Star Catalogue (BSC), Be stars, BeXRBs, and Be+sdO systems), we visually inspect WISE 22 μm images. Based on nebular shape and relative position, we distinguish five categories: offset bow shocks structurally aligned with the stellar space velocity, unaligned offset bow shocks, and centered, unresolved, and not classified nebulae. Results. In the BSC, we find that 28%, 13%, and 0.4% of all O, B, and A stars, respectively, possess associated infrared (IR) nebulae. Additionally, 34/234 Be stars, 4/72 BeXRBs, and 3/17 Be+sdO systems are associated with IR nebulae. Conclusions. Aligned or unaligned bow shocks result from high relative velocities between star and interstellar medium (ISM) that are dominated by the star or the ISM, respectively. About 13% of the centered nebulae could be bow shocks seen head- or tail-on. For the rest, the data disfavor explanations as remains of parental disks, supernova remnants of a previous companion, and dust production in stellar winds. The existence of centered nebulae also at high Galactic latitudes strongly limits the global risk of coincidental alignments with condensations in the ISM. Mass loss during binary evolution seems a viable mechanism for the formation of at least some of these nebulae. In total, about 29% of the IR nebulae (2% of all OBA stars in the BSC) may find their explanation in the context of binary evolution.

2019 ◽  
Vol 627 ◽  
pp. A14 ◽  
Author(s):  
P. Neunteufel ◽  
S.-C. Yoon ◽  
N. Langer

Context. Helium accretion induced explosions in CO white dwarfs (WDs) are considered promising candidates for a number of observed types of stellar transients, including supernovae (SNe) of Type Ia and Type Iax. However, a clear favorite outcome has not yet emerged. Aims. We explore the conditions of helium ignition in the WD and the final fates of helium star-WD binaries as functions of their initial orbital periods and component masses. Methods. We computed 274 model binary systems with the Binary Evolution Code, in which both components are fully resolved. Both stellar and orbital evolution were computed including mass and angular momentum transfer, tides, gravitational wave emission, differential rotation, and internal hydrodynamic and magnetic angular momentum transport. We worked out the parts of the parameter space leading to detonations of the accreted helium layer on the WD, likely resulting in the complete disruption of the WD to deflagrations, where the CO core of the WD may remain intact and where helium ignition in the WD is avoided. Results. We find that helium detonations are expected only in systems with the shortest initial orbital periods, and for initially massive WDs (MWD ≥ 1.0 M⊙) and lower mass donors (Mdonor ≤ 0.8 M⊙), which have accumulated helium layers mostly exceeding 0.1 M⊙. Upon detonation, these systems would release the donor as a hypervelocity pre-WD runaway star, for which we predict the expected range of kinematic and stellar properties. Systems with more massive donors or initial periods exceeding 1.5 h likely undergo helium deflagrations after accumulating 0.1 − 0.001 M⊙ of helium. Helium ignition in the WD is avoided in systems with helium donor stars below ∼0.6 M⊙, and leads to three distinctly different groups of double WD systems. Conclusions. The size of the parameter space open to helium detonation corresponds to only about 3% of the galactic SN Ia rate and to 10% of the SN Iax rate, while the predicted large amounts of helium (0.1 M⊙) in progenitors cannot easily be reconciled with observations of archetypical SN Ia. However, the transients emerging from these systems may contribute significantly to massive helium novae, calcium-rich SNe Ib, and, potentially, very close double degenerate systems that may eventually produce either ordinary or peculiar SNe Ia, or, for the smallest considered masses, R Coronae Borealis stars.


2000 ◽  
Vol 175 ◽  
pp. 668-680 ◽  
Author(s):  
Douglas R. Gies

AbstractModels of close binary evolution predict that mass gainers will be spun up to speeds close to the critical rotational velocity while the mass donors will appear as stripped down He stars, white dwarfs, or neutron stars. I argue here that the mass gainers are closely related to the Be stars. I present a list of the known Be binary systems which consists of those with bright, Roche-filling companions and those with faint or undetected companions. Notably absent are Be + B systems which are expected if the Be phase is a stage in the life of a single star. We now have the first example of a Be + He star system in the binary, ϕ Per, and taken together with the well known Be X-ray binaries, there is clear evidence that some fraction of Be stars are created in binaries; whether all such rapid rotators are so formed remains unknown.


2017 ◽  
Vol 12 (S330) ◽  
pp. 321-322
Author(s):  
Douglas Boubert ◽  
Morgan Fraser ◽  
N. Wyn Evans

AbstractIt is expected that most massive stars have companions and thus that some core-collapse supernovae should have a runaway companion. The precise astrometry and photometry provided by Gaia allows for the systematic discovery of these runaway companions. We combine a prior on the properties of runaway stars from binary evolution with data from TGAS and APASS to search for runaway stars within ten nearby supernova remnants. We strongly confirm the existing candidate HD 37424 in S147, propose the Be star BD+50 3188 to be associated with HB 21, and suggest tentative candidates for the Cygnus and Monoceros Loops.


2000 ◽  
Vol 175 ◽  
pp. 693-696
Author(s):  
Natalya V. Raguzova

AbstractUsing the “Scenario Machine” we study the number and physical properties of binary Be stars with white dwarfs taking into account cooling of the compact object and discuss the formation of such systems. According to our calculations the number of binary systems containing a Be star paired with a white dwarf in our galaxy is very large − 46% of all Be stars formed as a result of binary evolution must have a white dwarf as companion. These white dwarfs should be very hot with a surface temperature lying in the range from 30,000 to 60,000 K.


2000 ◽  
Vol 177 ◽  
pp. 491-492
Author(s):  
D.R. Lorimer ◽  
R. Ramachandran

AbstractThe fact that the majority of the youngest radio pulsars are surrounded by expanding supernova remnants is strong evidence that neutron stars are produced in the supernovae of massive stars. In many cases, the pulsar appears significantly offset from the geometric centre of the supernova remnant, indicating that the neutron star has moved away from the site of the explosion with a substantial space velocity since birth. Here we show that the these offsets show an overwhelming preference for one sign in terms of Galactic longitude, a result that has important implications for the number of genuine associations. The origin of this statistically significant effect may lie in a differential Galactic rotational velocity between stars and gas in the interstellar medium.


2014 ◽  
Vol 10 (S305) ◽  
pp. 61-66 ◽  
Author(s):  
Coralie Neiner ◽  
Stéphane Mathis ◽  
Evelyne Alecian ◽  
Constance Emeriau ◽  
Jason Grunhut ◽  
...  

AbstractObservations of stable mainly dipolar magnetic fields at the surface of ~7% of single hot stars indicate that these fields are of fossil origin, i.e. they descend from the seed field in the molecular clouds from which the stars were formed. The recent results confirm this theory. First, theoretical work and numerical simulations confirm that the properties of the observed fields correspond to those expected from fossil fields. They also showed that rapid rotation does not modify the surface dipolar magnetic configurations, but hinders the stability of fossil fields. This explains the lack of correlation between the magnetic field properties and stellar properties in massive stars. It may also explain the lack of detections of magnetic fields in Be stars, which rotate close to their break-up velocity. In addition, observations by the BinaMIcS collaboration of hot stars in binary systems show that the fraction of those hosting detectable magnetic fields is much smaller than for single hot stars. This could be related to results obtained in simulations of massive star formation, which show that the stronger the magnetic field in the original molecular cloud, the more difficult it is to fragment massive cores to form several stars. Therefore, more and more arguments support the fossil field theory.


1996 ◽  
Vol 145 ◽  
pp. 399-406
Author(s):  
Roger A. Chevalier

Core collapse in very massive stars can lead to a central black hole that swallows the rest of the star and in less massive stars to a central neutron star and explosion. There is probably an intermediate mass range that gives an explosion and a central black hole; supernova remnants with no observable central object are candidates. The association of pulsars with Type II supernovae gives an estimate of the pulsar power to be expected in a supernova, but the uncertainty in the initial pulsar periods gives a wide range in possible powers. The relativistic wind bubble model for the Crab Nebula has steadily developed and there are now predictions regarding particle acceleration in the optical wisps. The bubble model with expansion into supernova gas can also be applied to other young pulsar nebulae.


2014 ◽  
Vol 1 ◽  
pp. 7-11 ◽  
Author(s):  
J. Becker Tjus

Abstract. Massive stars play an important role in explaining the cosmic ray spectrum below the knee, possibly even up to the ankle, i.e. up to energies of 1015 or 1018.5 eV, respectively. In particular, Supernova Remnants are discussed as one of the main candidates to explain the cosmic ray spectrum. Even before their violent deaths, during the stars' regular life times, cosmic rays can be accelerated in wind environments. High-energy gamma-ray measurements indicate hadronic acceleration binary systems, leading to both periodic gamma-ray emission from binaries like LSI + 60 303 and continuous emission from colliding wind environments like η-Carinae. The detection of neutrinos and photons from hadronic interactions are one of the most promising methods to identify particle acceleration sites. In this paper, future prospects to detect neutrinos from colliding wind environments in massive stars are investigated. In particular, the seven most promising candidates for emission from colliding wind binaries are investigated to provide an estimate of the signal strength. The expected signal of a single source is about a factor of 5–10 below the current IceCube sensitivity and it is therefore not accessible at the moment. What is discussed in addition is future the possibility to measure low-energy neutrino sources with detectors like PINGU and ORCA: the minimum of the atmospheric neutrino flux at around 25 GeV from neutrino oscillations provides an opportunity to reduce the background and increase the significance to searches for GeV–TeV neutrino sources. This paper presents the first idea, detailed studies including the detector's effective areas will be necessary in the future to test the feasibility of such an approach.


2009 ◽  
Vol 5 (H15) ◽  
pp. 808-808
Author(s):  
Emma de Oña-Wilhelmi

AbstractThe H.E.S.S. Galactic Plane Survey (GPS) has revealed a large number of Galactic Sources, including Pulsar Wind Nebulae (PWN), Supernova Remnants (SNRs), giant molecular clouds, star formation regions and compact binary systems, as well as a number of unidentified objects, or dark sources, for which no obvious counterparts at other wavelengths have yet been found. We will review the latest results from the GPS observations and discuss the most interesting cases.


Science ◽  
2018 ◽  
Vol 362 (6411) ◽  
pp. 201-206 ◽  
Author(s):  
K. De ◽  
M. M. Kasliwal ◽  
E. O. Ofek ◽  
T. J. Moriya ◽  
J. Burke ◽  
...  

Compact neutron star binary systems are produced from binary massive stars through stellar evolution involving up to two supernova explosions. The final stages in the formation of these systems have not been directly observed. We report the discovery of iPTF 14gqr (SN 2014ft), a type Ic supernova with a fast-evolving light curve indicating an extremely low ejecta mass (≈0.2 solar masses) and low kinetic energy (≈2 × 1050ergs). Early photometry and spectroscopy reveal evidence of shock cooling of an extended helium-rich envelope, likely ejected in an intense pre-explosion mass-loss episode of the progenitor. Taken together, we interpret iPTF 14gqr as evidence for ultra-stripped supernovae that form neutron stars in compact binary systems.


Sign in / Sign up

Export Citation Format

Share Document