scholarly journals Spectroscopic Binaries in Southern Open Clusters

2004 ◽  
Vol 191 ◽  
pp. 141-142
Author(s):  
H. Levato ◽  
J.F. González ◽  
S. Malaroda ◽  
M. Grosso

AbstractThis is a report on an ongoing program about binaries in southern open clusters. The long-term purpose of this project is to contribute to understanding the formation and evolution of spectroscopic binaries, providing observational constraints that will permit tests of some of the current theories on binary formation in open clusters.

1992 ◽  
Vol 135 ◽  
pp. 110-118
Author(s):  
D.W. Latham

Abstract For more than a decade we have been measuring stellar radial velocities with three almost identical digital speedometers on telescopes in Arizona and Massachusetts. By now we have accumulated nearly 100,000 measurements with a typical precision of better than 1 km s-1. One of the main scientific applications has been surveys of binaries in several different stellar environments, to study the frequency and orbital characteristics of binaries in a variety of stellar populations. A main goal is to confront theories of binary formation and evolution with observational results. With various collaborators we have investigated the binary populations among pre-main-sequence stars, in the Hyades and M67 open clusters, and in the Carney-Latham proper-motion sample. Thus, we have data for coeval samples of binaries covering a wide range of ages. One result is clear evidence for evolution of binary orbits. The orbital period at which there is a transition from circular to eccentric orbits gets longer for older samples of binaries, presumably due to tidal circularization. Another result is that the frequency of binaries does not seem to depend on the stellar population. Binaries are just as common among the oldest stars in the halo of our Galaxy as among the younger stars in the disk.


2008 ◽  
Vol 4 (S254) ◽  
pp. 133-138
Author(s):  
G. M. De Silva ◽  
K. C. Freeman ◽  
J. Bland-Hawthorn

AbstractThe long term goal of large-scale chemical tagging is to use stellar elemental abundances as a tracer of dispersed substructures of the Galactic disk. The identification of such lost stellar aggregates and exploring their chemical properties will be key in understanding the formation and evolution of the disk. Present day stellar structures such as open clusters and moving groups are the ideal testing grounds for the viability of chemical tagging, as they are believed to be the remnants of the original larger star-forming aggregates. We examine recent high resolution abundance studies of open clusters to explore the various abundance trends and reassess the prospects of large-scale chemical tagging.


2009 ◽  
Vol 26 (1) ◽  
pp. 11-16 ◽  
Author(s):  
G. M. De Silva ◽  
K. C. Freeman ◽  
J. Bland-Hawthorn

AbstractThe long term goal of large-scale chemical tagging is to use stellar elemental abundances as a tracer of dispersed substructures of the Galactic disk. The identification of such lost stellar aggregates and the exploration of their chemical properties will be key in understanding the formation and evolution of the disk. Present day stellar structures such as open clusters and moving groups are the ideal testing grounds for the viability of chemical tagging, as they are believed to be the remnants of the original larger star-forming aggregates. Until recently, high accuracy elemental abundance studies of open clusters and moving groups having been lacking in the literature. In this paper we examine recent high resolution abundance studies of open clusters to explore the various abundance trends and reasses the prospects of large-scale chemical tagging.


2021 ◽  
Vol 13 (9) ◽  
pp. 1852
Author(s):  
Yiren Wang ◽  
Dong Liu ◽  
Wanyi Xie ◽  
Ming Yang ◽  
Zhenyu Gao ◽  
...  

The formation and evolution of clouds are associated with their thermodynamical and microphysical progress. Previous studies have been conducted to collect images using ground-based cloud observation equipment to provide important cloud characteristics information. However, most of this equipment cannot perform continuous observations during the day and night, and their field of view (FOV) is also limited. To address these issues, this work proposes a day and night clouds detection approach integrated into a self-made thermal-infrared (TIR) all-sky-view camera. The TIR camera consists of a high-resolution thermal microbolometer array and a fish-eye lens with a FOV larger than 160°. In addition, a detection scheme was designed to directly subtract the contamination of the atmospheric TIR emission from the entire infrared image of such a large FOV, which was used for cloud recognition. The performance of this scheme was validated by comparing the cloud fractions retrieved from the infrared channel with those from the visible channel and manual observation. The results indicated that the current instrument could obtain accurate cloud fraction from the observed infrared image, and the TIR all-sky-view camera developed in this work exhibits good feasibility for long-term and continuous cloud observation.


1998 ◽  
Vol 11 (1) ◽  
pp. 379-379
Author(s):  
P.L. Cottrell ◽  
L. Skuljan ◽  
P.M. Kilmartin ◽  
C. Gilmore ◽  
W.A. Lawson

For more than a decade we have been able to acquire and analyse a significant amount of photometric data of the highly variable R Coronae Borealis (RCB) stars. This has made been possible by a photometric service observing programme instigated at the Observatory. These photometric data have been combined with less extensive spectroscopic coverage, particularly of the decline phase of these stars. These have been supplemented by observations obtained at Mount Stromlo and Siding Spring Observatories for a radial velocity study. Significantly more spectroscopic observations are now being acquired with the development of a new medium resolution spectrograph at Mount John University Observatory. In this poster we will present recent photometric and spectroscopic results for a number of the RCB stars in our sample. This observational and analysis work can be used to provide further insight into the nature of these stars, their likely progeny and progenitors and the processes that are involved in the formation and evolution of the obscuring dust clouds which cause the decline phase.


Icarus ◽  
2015 ◽  
Vol 251 ◽  
pp. 244-263 ◽  
Author(s):  
Colin M. Dundas ◽  
Serina Diniega ◽  
Alfred S. McEwen

2021 ◽  
Author(s):  
Yining Sun ◽  
Ji Li ◽  
Zhixian Cao ◽  
Alistair G.L. Borthwick

<p>For reservoirs built on a hyper-concentrated river, tributary inflow and sediment input may affect the formation and evolution of reservoir turbidity current, and accordingly bed morphology. However, the understanding of tributary effects on reservoir turbidity currents has remained poor. Here a series of laboratory-scale reservoir turbidity currents are investigated using a coupled 2D double layer-averaged shallow water hydro-sediment-morphodynamic model. It is shown that the tributary location may lead to distinctive effects on reservoir turbidity current. Clear-water flow from the tributary may cause the stable plunge point to migrate upstream, and reduce its front speed. Sediment-laden inflow from the tributary may increase the discharge, sediment concentration, and front speed of the turbidity current, and also cause the plunge point to migrate downstream when the tributary is located upstream of the plunge point. In contrast, if the tributary is located downstream of the plunge point, sediment-laden flow from the tributary causes the stable plunge point to migrate upstream, and while the tributary effects on discharge, sediment concentration, and front speed of the turbidity current are minor. A case study is presented as of the Guxian Reservoir (under planning) on the middle Yellow River, China. The present finding highlights the significance of tributary inflow and sediment input in the formation and propagation of reservoir turbidity current and also riverbed deformation. Appropriate account of tributary effects is warranted for long-term maintenance of reservoir capacity and maximum utilization of the reservoir.</p>


2020 ◽  
Vol 216 (6) ◽  
Author(s):  
Magali Deleuil ◽  
Don Pollacco ◽  
Clément Baruteau ◽  
Heike Rauer ◽  
Michel Blanc

2020 ◽  
Vol 635 ◽  
pp. A191
Author(s):  
A. Maliuk ◽  
J. Budaj

Context. Surveying the spatial distribution of exoplanets in the Galaxy is important for improving our understanding of planet formation and evolution. Aims. We aim to determine the spatial gradients of exoplanet occurrence in the Solar neighbourhood and in the vicinity of open clusters. Methods. We combined Kepler and Gaia DR2 data for this purpose, splitting the volume sampled by the Kepler mission into certain spatial bins. We determined an uncorrected and bias-corrected exoplanet frequency and metallicity for each bin. Results. There is a clear drop in the uncorrected exoplanet frequency with distance for F-type stars (mainly for smaller planets), a decline with increasing distance along the Galactic longitude l = 90°, and a drop with height above the Galactic plane. We find that the metallicity behaviour cannot be the reason for the drop of the exoplanet frequency around F stars with increasing distance. This might have only contributed to the drop in uncorrected exoplanet frequency with the height above the Galactic plane. We argue that the above-mentioned gradients of uncorrected exoplanet frequency are a manifestation of a single bias of undetected smaller planets around fainter stars. When we correct for observational biases, most of these gradients in exoplanet frequency become statistically insignificant. Only a slight decline of the planet occurrence with distance for F stars remains significant at the 3σ level. Apart from that, the spatial distribution of exoplanets in the Kepler field of view is compatible with a homogeneous one. At the same time, we do not find a significant change in the exoplanet frequency with increasing distance from open clusters. In terms of byproducts, we identified six exoplanet host star candidates that are members of open clusters. Four of them are in the NGC 6811 (KIC 9655005, KIC 9533489, Kepler-66, Kepler-67) and two belong to NGC 6866 (KIC 8396288, KIC 8331612). Two out of the six had already been known to be cluster members.


2019 ◽  
Vol 488 (3) ◽  
pp. 3482-3491 ◽  
Author(s):  
David V Martin

Abstract Almost a dozen circumbinary planets have been found transiting eclipsing binaries. For the first time the observational bias of this sample is calculated with respect to the mass ratio of the host binaries. It is shown that the mass ratio affects transit detection in multiple, sometimes subtle ways, through stability and dynamics of orbits, dilution of transit depths, and the geometric transit and eclipse probabilities. Surprisingly though, it is found that these effects largely cancel out. Consequently, the transit detections in the Kepler mission are essentially unbiased with respect to mass ratio, and hence likely representative of the true underlying population. It is shown that the mass ratio distribution of circumbinary hosts may be the same as field binaries, and hence roughly uniform, but more observations are needed to deduce any subtle differences. These results are discussed in the context of close binary formation and evolution, of which the mass ratio is believed to be a marker, and other surveys for circumbinary planets including TESS and BEBOP.


Sign in / Sign up

Export Citation Format

Share Document