scholarly journals Tests for Supernova Explosion Models: from Light Curves to X-ray Emission of Supernova Remnants

2005 ◽  
Vol 192 ◽  
pp. 269-274
Author(s):  
Elena Sorokina ◽  
Sergey Blinnikov

SummaryThe successful theoretical supernova explosion models should be able to explain any features of the emission from supernovae at any evolutionary stage. We check several models from two different points of view. With the multi-frequency radiation hydro code STELLA we calculate gamma-ray, bolometric and broad-band UBVI light curves. Then we use the same models to calculate the emission from young supernova remnants. Here we present new plots for gamma-ray luminosity from several SN Ia models and recomputations of bolometric and UBVRI light curves of model 13C for SN 1993J.

2008 ◽  
Vol 386 (2) ◽  
pp. 859-863 ◽  
Author(s):  
P. A. Curran ◽  
A. J. van der Horst ◽  
R. A. M. J. Wijers
Keyword(s):  

2013 ◽  
Vol 9 (S296) ◽  
pp. 295-299
Author(s):  
Marie-Hélène Grondin ◽  
John W. Hewitt ◽  
Marianne Lemoine-Goumard ◽  
Thierry Reposeur ◽  

AbstractThe supernova remnant (SNR) Puppis A (aka G260.4-3.4) is a middle-aged supernova remnant, which displays increasing X-ray surface brightness from West to East corresponding to an increasing density of the ambient interstellar medium at the Eastern and Northern shell. The dense IR photon field and the high ambient density around the remnant make it an ideal case to study in γ-rays. Gamma-ray studies based on three years of observations with the Large Area Telescope (LAT) aboard Fermi have revealed the high energy gamma-ray emission from SNR Puppis A. The γ-ray emission from the remnant is spatially extended, and nicely matches the radio and X-ray morphologies. Its γ-ray spectrum is well described by a simple power law with an index of ~2.1, and it is among the faintest supernova remnants yet detected at GeV energies. To constrain the relativistic electron population, seven years of Wilkinson Microwave Anisotropy Probe (WMAP) data were also analyzed, and enabled to extend the radio spectrum up to 93 GHz. The results obtained in the radio and γ-ray domains are described in detail, as well as the possible origins of the high energy γ-ray emission (Bremsstrahlung, Inverse Compton scattering by electrons or decay of neutral pions produced by proton interactions).


1994 ◽  
Vol 159 ◽  
pp. 63-72 ◽  
Author(s):  
E. Churazov ◽  
M. Gilfanov ◽  
A. Finoguenov ◽  
R. Sunyaev ◽  
M. Chernyakova ◽  
...  

Brief review of AGNs observations in the X-ray / soft gamma-ray bands with the orbital observatory GRANAT is presented.For three well known bright objects (3C273, NGC4151 and Cen A) broad band (3 keV–few hundreds keV) spectra have been obtained. Imaging capabilities allowed accurate (several arcminutes) identification of these objects with sources of hard X-rays.The spectrum of NGC4151 above ≈ 50 keV was found to be much steeper than that in most of the previous observations, while in standard X-ray band the spectrum agrees with observed previously. The comparison of the observed spectra with that of the X-Ray Background (XRB) indicates that sources similar to NGC4151 could reproduce the shape of XRB spectrum in 3–60 keV band.Cen A was observed in the very low state during most of observations in 1990–1993, except for two observations in 1991. The variability of the hard X-ray flux has been detected on the time scales of several days.


2019 ◽  
Vol 485 (3) ◽  
pp. 4287-4310 ◽  
Author(s):  
Samuel W Jones ◽  
Heiko Möller ◽  
Chris L Fryer ◽  
Christopher J Fontes ◽  
Reto Trappitsch ◽  
...  

Abstract We investigate 60Fe in massive stars and core-collapse supernovae focussing on uncertainties that influence its production in 15, 20, and 25 M$\odot$ stars at solar metallicity. We find that the 60Fe yield is a monotonic increasing function of the uncertain 59Fe(n, γ)60Fe cross-section and that a factor of 10 reduction in the reaction rate results in a factor of 8–10 reduction in the 60Fe yield, while a factor of 10 increase in the rate increases the yield by a factor of 4–7. We find that none of the 189 simulations we have performed are consistent with a core-collapse supernova triggering the formation of the Solar system, and that only models using 59Fe(n, γ)60Fe cross-section that is less than or equal to that from NON-SMOKER can reproduce the observed 60Fe/26Al line flux ratio in the diffuse interstellar medium. We examine the prospects of detecting old core-collapse supernova remnants (SNRs) in the Milky Way from their gamma-ray emission from the decay of 60Fe, finding that the next generation of gamma-ray missions could be able to discover up to ∼100 such old SNRs as well as measure the 60Fe yields of a handful of known Galactic SNRs. We also predict the X-ray spectrum that is produced by atomic transitions in 60Co following its ionization by internal conversion and give theoretical X-ray line fluxes as a function of remnant age as well as the Doppler and fine-structure line broadening effects. The X-ray emission presents an interesting prospect for addressing the missing SNR problem with future X-ray missions.


Author(s):  
Ken Makino ◽  
Yutaka Fujita ◽  
Kumiko K Nobukawa ◽  
Hironori Matsumoto ◽  
Yutaka Ohira

Abstract Recent discovery of the X-ray neutral iron line (Fe  i Kα at 6.40 keV) around several supernova remnants (SNRs) show that MeV cosmic-ray (CR) protons are distributed around the SNRs and are interacting with neutral gas there. We propose that these MeV CRs are the ones that have been accelerated at the SNRs together with GeV–TeV CRs. In our analytical model, the MeV CRs are still confined in the SNR when the SNR collides with molecular clouds. After the collision, the MeV CRs leak into the clouds and produce the neutral iron line emissions. On the other hand, GeV–TeV CRs had already escaped from the SNRs and emitted gamma-rays through interaction with molecular clouds surrounding the SNRs. We apply this model to the SNRs W 28 and W 44 and show that it can reproduce the observations of the iron line intensities and the gamma-ray spectra. This could be additional support of the hadronic scenario for the gamma-ray emissions from these SNRs.


2019 ◽  
Vol 622 ◽  
pp. A211 ◽  
Author(s):  
Francesco Coti Zelati ◽  
Alessandro Papitto ◽  
Domitilla de Martino ◽  
David A. H. Buckley ◽  
Alida Odendaal ◽  
...  

We report on a multi-wavelength study of the unclassified X-ray source CXOU J110926.4−650224 (J1109). We identified the optical counterpart as a blue star with a magnitude of ∼20.1 (3300–10500 Å). The optical emission was variable on timescales from hundreds to thousands of seconds. The spectrum showed prominent emission lines with variable profiles at different epochs. Simultaneous XMM-Newton and NuSTAR observations revealed a bimodal distribution of the X-ray count rates on timescales as short as tens of seconds, as well as sporadic flaring activity. The average broad-band (0.3–79 keV) spectrum was adequately described by an absorbed power law model with photon index of Γ = 1.63  ±  0.01 (at 1σ c.l.), and the X-ray luminosity was (2.16  ±  0.04)  ×  1034 erg s−1 for a distance of 4 kpc. Based on observations with different instruments, the X-ray luminosity has remained relatively steady over the past ∼15 years. J1109 is spatially associated with the gamma-ray source FL8Y J1109.8−6500, which was detected with Fermi at an average luminosity of (1.5  ±  0.2)  ×  1034 erg s−1 (assuming the distance of J1109) over the 0.1–300 GeV energy band between 2008 and 2016. The source was undetected during ATCA radio observations that were simultaneous with NuSTAR, down to a 3σ flux upper limit of 18 μJy beam−1 (at 7.25 GHz). We show that the phenomenological properties of J1109 point to a binary transitional pulsar candidate currently in a sub-luminous accretion disk state, and that the upper limits derived for the radio emission are consistent with the expected radio luminosity for accreting neutron stars at similar X-ray luminosities.


2020 ◽  
Vol 495 (1) ◽  
pp. 365-374 ◽  
Author(s):  
M Chernyakova ◽  
D Malyshev ◽  
P Blay ◽  
B van Soelen ◽  
S Tsygankov

ABSTRACT PSR J2032+4127 is only the second known gamma-ray binary where it is confirmed that a young radio pulsar is in orbit around a Be-star. The interaction of the pulsar wind with the mass outflow from the companion leads to broad-band emission from radio up to TeV energies. In this paper we present results of optical monitoring of the 2017 periastron passage with the Nordic Optical Telescope. These observations are complemented by X-ray (Swift/XRT, NuSTAR) and GeV (Fermi/LAT) monitoring. Joint analysis of the evolution of the parameters of the H α line and the broad-band (X-ray to TeV) spectral shape allows us to propose a model linking the observed emission to the interaction of the pulsar and Be-star winds under the assumption of the inclined disc geometry. Our model allows the observed flux and spectral evolution of the system to be explained in a self-consistent way.


2017 ◽  
Vol 12 (S331) ◽  
pp. 268-273
Author(s):  
O. Petruk ◽  
S. Orlando ◽  
M. Miceli

AbstractAcceleration times of particles responsible for the gamma-rays in supernova remnants (SNRs) are comparable with SNR age. If the number of particles starting acceleration was varying during early times after the supernova explosion then this variation should be reflected in the shape of the gamma-ray spectrum. In order to analyse this effect, we consider the time variation of the radio spectral index in SN1987A and solution of the non-stationary equation for particle acceleration. We reconstruct evolution of the particle injection in SN1987A, apply it to derive the particle momentum distribution in IC443 and model its gamma-ray spectrum. We show that: i) observed break in the proton spectrum around 50 GeV in IC443 is a consequence of the variation of the cosmic ray injection; ii) shape of the hadronic gamma-ray spectrum in SNRs critically depends on the temporal variation of the cosmic ray injection in the immediate post explosion phases.


2002 ◽  
Vol 141 (2) ◽  
pp. 415-428 ◽  
Author(s):  
D. A. Smith ◽  
A. Levine ◽  
H. Bradt ◽  
K. Hurley ◽  
M. Feroci ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document