scholarly journals 60Fe in core-collapse supernovae and prospects for X-ray and gamma-ray detection in supernova remnants

2019 ◽  
Vol 485 (3) ◽  
pp. 4287-4310 ◽  
Author(s):  
Samuel W Jones ◽  
Heiko Möller ◽  
Chris L Fryer ◽  
Christopher J Fontes ◽  
Reto Trappitsch ◽  
...  

Abstract We investigate 60Fe in massive stars and core-collapse supernovae focussing on uncertainties that influence its production in 15, 20, and 25 M$\odot$ stars at solar metallicity. We find that the 60Fe yield is a monotonic increasing function of the uncertain 59Fe(n, γ)60Fe cross-section and that a factor of 10 reduction in the reaction rate results in a factor of 8–10 reduction in the 60Fe yield, while a factor of 10 increase in the rate increases the yield by a factor of 4–7. We find that none of the 189 simulations we have performed are consistent with a core-collapse supernova triggering the formation of the Solar system, and that only models using 59Fe(n, γ)60Fe cross-section that is less than or equal to that from NON-SMOKER can reproduce the observed 60Fe/26Al line flux ratio in the diffuse interstellar medium. We examine the prospects of detecting old core-collapse supernova remnants (SNRs) in the Milky Way from their gamma-ray emission from the decay of 60Fe, finding that the next generation of gamma-ray missions could be able to discover up to ∼100 such old SNRs as well as measure the 60Fe yields of a handful of known Galactic SNRs. We also predict the X-ray spectrum that is produced by atomic transitions in 60Co following its ionization by internal conversion and give theoretical X-ray line fluxes as a function of remnant age as well as the Doppler and fine-structure line broadening effects. The X-ray emission presents an interesting prospect for addressing the missing SNR problem with future X-ray missions.

2019 ◽  
Vol 487 (4) ◽  
pp. 5010-5018 ◽  
Author(s):  
L C Strang ◽  
A Melatos

Abstract Many short gamma-ray bursts (sGRBs) exhibit a prolonged plateau in the X-ray light curve following the main burst. It is shown that an X-ray plateau at the observed luminosity emerges naturally from a plerion-like model of the sGRB remnant, in which the magnetized, relativistic wind of a millisecond magnetar injects shock-accelerated electrons into a cavity confined by the sGRB blast wave. A geometry-dependent fraction of the plerionic radiation is also intercepted and reprocessed by the optically thick merger ejecta. The relative contributions of the plerion and ejecta to the composite X-ray light curve are estimated approximately with the aid of established ejecta models. The plerionic component of the electron energy spectrum is evolved under the action of time-dependent, power-law injection and adiabatic and synchrotron cooling in order to calculate the X-ray light curve analytically. The model yields an anticorrelation between the luminosity and duration of the plateau as well as a sudden cut-off in the X-ray flux, if the decelerating magnetar collapses to form a black hole. Both features are broadly consistent with the data and can be related to the surface magnetic field of the magnetar and its angular velocity at birth. The analogy with core-collapse supernova remnants is discussed briefly.


2018 ◽  
Vol 864 (2) ◽  
pp. 175 ◽  
Author(s):  
Dennis Alp ◽  
Josefin Larsson ◽  
Claes Fransson ◽  
Michael Gabler ◽  
Annop Wongwathanarat ◽  
...  

2008 ◽  
Vol 17 (09) ◽  
pp. 1383-1389 ◽  
Author(s):  
J. STAFF ◽  
B. NIEBERGAL ◽  
R. OUYED

We describe a model within the "quark-nova" scenario to interpret the recent observations of early X-ray afterglows of long gamma-ray bursts (GRBs) with the Swift satellite. This is a three-stage model within the context of a core-collapse supernova. STAGE 1 is an accreting (proto-) neutron star leading to a possible delay between the core collapse and the GRB. STAGE 2 is accretion onto a quark star, launching an ultrarelativistic jet generating the prompt GRB. This jet also creates the afterglow as the jet interacts with the surrounding medium creating an external shock. Slower shells ejected from the quark star (during accretion), can re-energize the external shock leading to a flatter segment in the X-ray afterglow. STAGE 3, which occurs only if the quark star collapses to form a black hole, consists of an accreting black hole. The jet launched in this accretion process interacts with the preceding quark star jet, and could generate the flaring activity frequently seen in early X-ray afterglows. Alternatively, a STAGE 2b can occur in our model if the quark star does not collapse to a black hole. The quark star in this case can then spin down due to magnetic braking, and the spin down energy may lead to flattening in the X-ray afterglow as well. This model seems to account for both the energies and the timescales of GRBs, in addition to the newly discovered early X-ray afterglow features.


2013 ◽  
Vol 9 (S296) ◽  
pp. 295-299
Author(s):  
Marie-Hélène Grondin ◽  
John W. Hewitt ◽  
Marianne Lemoine-Goumard ◽  
Thierry Reposeur ◽  

AbstractThe supernova remnant (SNR) Puppis A (aka G260.4-3.4) is a middle-aged supernova remnant, which displays increasing X-ray surface brightness from West to East corresponding to an increasing density of the ambient interstellar medium at the Eastern and Northern shell. The dense IR photon field and the high ambient density around the remnant make it an ideal case to study in γ-rays. Gamma-ray studies based on three years of observations with the Large Area Telescope (LAT) aboard Fermi have revealed the high energy gamma-ray emission from SNR Puppis A. The γ-ray emission from the remnant is spatially extended, and nicely matches the radio and X-ray morphologies. Its γ-ray spectrum is well described by a simple power law with an index of ~2.1, and it is among the faintest supernova remnants yet detected at GeV energies. To constrain the relativistic electron population, seven years of Wilkinson Microwave Anisotropy Probe (WMAP) data were also analyzed, and enabled to extend the radio spectrum up to 93 GHz. The results obtained in the radio and γ-ray domains are described in detail, as well as the possible origins of the high energy γ-ray emission (Bremsstrahlung, Inverse Compton scattering by electrons or decay of neutral pions produced by proton interactions).


2020 ◽  
Vol 497 (3) ◽  
pp. 3581-3590
Author(s):  
Emma de Oña Wilhelmi ◽  
Iurii Sushch ◽  
Robert Brose ◽  
Enrique Mestre ◽  
Yang Su ◽  
...  

ABSTRACT Recent results obtained with gamma-ray satellites have established supernova remnants as accelerators of GeV hadronic cosmic rays. In such processes, CRs accelerated in SNR shocks interact with particles from gas clouds in their surrounding. In particular, the rich medium in which core-collapse SNRs explode provides a large target density to boost hadronic gamma-rays. SNR G39.2–0.3 is one of the brightest SNR in infrared wavelengths, and its broad multiwavelength coverage allows a detailed modelling of its radiation from radio to high energies. We reanalysed the Fermi-LAT data on this region and compare it with new radio observations from the MWISP survey. The modelling of the spectral energy distribution from radio to GeV energies favours a hadronic origin of the gamma-ray emission and constrains the SNR magnetic field to be at least ∼100 µG. Despite the large magnetic field, the present acceleration of protons seems to be limited to ∼10 GeV, which points to a drastic slow down of the shock velocity due to the dense wall traced by the CO observations, surrounding the remnant. Further investigation of the gamma-ray spectral shape points to a dynamically old remnant subjected to severe escape of CRs and a decrease of acceleration efficiency. The low-energy peak of the gamma-ray spectrum also suggests that that the composition of accelerated particles might be enriched by heavy nuclei which is certainly expected for a core-collapse SNR. Alternatively, the contribution of the compressed pre-existing Galactic cosmic rays is discussed, which is, however, found to not likely be the dominant process for gamma-ray production.


Author(s):  
Ken Makino ◽  
Yutaka Fujita ◽  
Kumiko K Nobukawa ◽  
Hironori Matsumoto ◽  
Yutaka Ohira

Abstract Recent discovery of the X-ray neutral iron line (Fe  i Kα at 6.40 keV) around several supernova remnants (SNRs) show that MeV cosmic-ray (CR) protons are distributed around the SNRs and are interacting with neutral gas there. We propose that these MeV CRs are the ones that have been accelerated at the SNRs together with GeV–TeV CRs. In our analytical model, the MeV CRs are still confined in the SNR when the SNR collides with molecular clouds. After the collision, the MeV CRs leak into the clouds and produce the neutral iron line emissions. On the other hand, GeV–TeV CRs had already escaped from the SNRs and emitted gamma-rays through interaction with molecular clouds surrounding the SNRs. We apply this model to the SNRs W 28 and W 44 and show that it can reproduce the observations of the iron line intensities and the gamma-ray spectra. This could be additional support of the hadronic scenario for the gamma-ray emissions from these SNRs.


1988 ◽  
Vol 108 ◽  
pp. 383-393
Author(s):  
Claes Fransson

Since the appearance of the classical papers on stellar nucleosynthesis in the 1950’s most of the observational tests have been through indirect sources of information. Even though this has been rather successful (cf. various contributions in this volume), it represents only an average over all sources, yielding little information about specific stars. The most direct evidence comes from observations of young galactic supernova remnants (age less than ∼103 years). Unfortunately, the analysis of X-ray data are hampered by a lack of understanding of the detailed physics, eg. non-equilibrium and plasma effects, as well as by observational problems (Itoh and Nomoto, 1987). Optical observations (cf. Raymond, 1984) have given some valuable insight of eg. the oxygen-rich remnants. The analysis of these are, however, suffering from the fact that only a small fraction of the mass is seen in the optical.


2011 ◽  
Vol 7 (S279) ◽  
pp. 75-82
Author(s):  
Paolo A. Mazzali

AbstractThe properties of the Supernovae discovered in coincidence with long-duration Gamma-ray Bursts and X-Ray Flashes are reviewed, and compared to those of SNe for which GRBs are not observed. The SNe associated with GRBs are of Type Ic, they are brighter than the norm, and show very broad absorption lines in their spectra, indicative of high expansion velocities and hence of large explosion kinetic energies. This points to a massive star origin, and to the birth of a black hole at the time of core collapse. There is strong evidence for gross asymmetries in the SN ejecta. The observational evidence seems to suggest that GRB/SNe are more massive and energetic than XRF/SNe, and come from more massive stars. While for GRB/SNe the collapsar model is favoured, XRF/SNe may host magnetars.


Sign in / Sign up

Export Citation Format

Share Document