scholarly journals Cosmic Gamma-Ray Bursts: The Big Picture

2005 ◽  
Vol 192 ◽  
pp. 433-439
Author(s):  
Kevin Hurley

SummaryA “typical” GRB occurs in a star-forming region of a galaxy at a redshift z~1. In currently popular models, it is caused by the collapse of a massive star which has exhausted its nuclear fuel supply. The star collapses to a black hole threaded by a strong magnetic field, and possibly fed by an accretion torus. Through a variety of processes, electrons are accelerated and gamma-rays, X-rays, optical light, and radio emission ensue, with durations from seconds to years. In this talk, I will review the general observational properties of bursts, their afterglows and host galaxies, and some of the open questions about them.

Author(s):  
D Watson ◽  
J.P.U Fynbo ◽  
C.C Thöne ◽  
J Sollerman

There is strong evidence that long-duration gamma-ray bursts (GRBs) are produced during the collapse of a massive star. In the standard version of the collapsar model, a broad-lined and luminous Type Ic core-collapse supernova (SN) accompanies the GRB. This association has been confirmed in observations of several nearby GRBs. Recent observations show that some long-duration GRBs are different. No SN emission accompanied the long-duration GRBs 060505 and 060614 down to limits fainter than any known Type Ic SN and hundreds of times fainter than the archetypal SN 1998bw that accompanied GRB 980425. Multi-band observations of the early afterglows, as well as spectroscopy of the host galaxies, exclude the possibility of significant dust obscuration. Furthermore, the bursts originated in star-forming galaxies, and in the case of GRB 060505, the burst was localized to a compact star-forming knot in a spiral arm of its host galaxy. We find that the properties of the host galaxies, the long duration of the bursts and, in the case of GRB 060505, the location of the burst within its host, all imply a massive stellar origin. The absence of an SN to such deep limits therefore suggests a new phenomenological type of massive stellar death.


2003 ◽  
Vol 18 (07) ◽  
pp. 477-489
Author(s):  
SAUL BARSHAY ◽  
GEORG KREYERHOFF

We consider a speculative model for gamma-ray bursts (GRB), which predicts that the total kinetic energy in the ejected matter is less than the total energy in the gamma rays. There is also secondary energy in X-rays, which are emitted contemporaneously with the gamma rays. The model suggests that bremsstrahlung and Compton up-scattering by very energetic electrons, are important processes for producing the observed burst radiation. The dynamics naturally allows for the possibility of a moderate degree of beaming of matter and radiation in some gamma-ray bursts. GRB are predicted to have an intrinsically wide distribution in total energies, in particular, on the low side. They are predicted to occur at large redshifts, z ~ 8, in local regions of dense matter.


2020 ◽  
Vol 641 ◽  
pp. A30
Author(s):  
J.-B. Vielfaure ◽  
S. D. Vergani ◽  
J. Japelj ◽  
J. P. U. Fynbo ◽  
M. Gronke ◽  
...  

Context. The identification of the sources that reionized the Universe and their specific contribution to this process are key missing pieces of our knowledge of the early Universe. Faint star-forming galaxies may be the main contributors to the ionizing photon budget during the epoch of reionization, but their escaping photons cannot be detected directly due to inter-galactic medium opacity. Hence, it is essential to characterize the properties of faint galaxies with significant Lyman continuum (LyC) photon leakage up to z ∼ 4 to define indirect indicators allowing analogs to be found at the highest redshift. Aims. Long gamma-ray bursts (LGRBs) typically explode in star-forming regions of faint, star-forming galaxies. Through LGRB afterglow spectroscopy it is possible to detect directly LyC photons. Our aim is to use LGRBs as tools to study LyC leakage from faint, star-forming galaxies at high redshift. Methods. Here we present the observations of LyC emission in the afterglow spectra of GRB 191004B at z = 3.5055, together with those of the other two previously known LyC-leaking LGRB host galaxies (GRB 050908 at z = 3.3467, and GRB 060607A at z = 3.0749), to determine their LyC escape fraction and compare their properties. Results. From the afterglow spectrum of GRB 191004B we determine a neutral hydrogen column density at the LGRB redshift of log(NH I/cm−2) = 17.2 ± 0.15, and negligible extinction (AV = 0.03 ± 0.02 mag). The only metal absorption lines detected are C IV and Si IV. In contrast to GRB 050908 and GRB 060607A, the host galaxy of GRB 191004B displays significant Lyman-alpha (Lyα) emission. From its Lyα emission and the non-detection of Balmer emission lines we constrain its star-formation rate (SFR) to 1 ≤ SFR ≤ 4.7 M⊙ yr−1. We fit the Lyα emission with a shell model and find parameters values consistent with the observed ones. The absolute (relative) LyC escape fractions we find for GRB 191004B, GRB 050908 and GRB 060607A are of 0.35−0.11+0.10 (0.43−0.13+0.12), 0.08−0.04+0.05 (0.08−0.04+0.05) and 0.20−0.05+0.05 (0.45−0.15+0.15), respectively. We compare the LyC escape fraction of LGRBs to the values of other LyC emitters found from the literature, showing that LGRB afterglows can be powerful tools to study LyC escape for faint high-redshift star-forming galaxies. Indeed we could push LyC leakage studies to much higher absolute magnitudes. The host galaxies of the three LGRBs presented here have all M1600 >  −19.5 mag, with the GRB 060607A host at M1600 >  −16 mag. LGRB hosts may therefore be particularly suitable for exploring the ionizing escape fraction in galaxies that are too faint or distant for conventional techniques. Furthermore, the time involved is minimal compared to galaxy studies.


2003 ◽  
Vol 212 ◽  
pp. 106-114
Author(s):  
Lex Kaper

With the detection of gamma-ray burst (GRB) afterglows, the cosmological origin of GRBs has been firmly established. Recent observations suggest that (long-duration) GRBs are due to the collapse of a massive star forming a black hole. Besides theoretical arguments, observational evidence supporting this hypothesis comes from the coincidence of several GRBs with a supernova. Also, all accurately located GRBs are contained in the optical (restframe UV) extent of distant, blue galaxies. Some of these host galaxies show relatively high star-formation rates, which is expected when massive stars and GRBs are physically linked. Alternatively, GRBs can be produced by the merging of a binary neutron star system, such as the Hulse-Taylor binary pulsar. Very likely GRBs trace the massive-star populations in distant galaxies. With their enormous brightness, GRBs are powerful probes of the early universe, providing information on the properties of their host galaxies, the cosmic star-formation history, and potentially the first generations of massive stars.


2015 ◽  
Vol 11 (A29B) ◽  
pp. 274-275
Author(s):  
Bunyo Hatsukade ◽  
Kouji Ohta ◽  
Akira Endo ◽  
Kouichiro Nakanishi ◽  
Yoichi Tamura ◽  
...  

AbstractWe detected CO line and 1.2-mm continuum emission from the two GRB host galaxies (GRB 020819B and GRB 051022) by using the Atacama Large Millimeter/submillimeter Array (ALMA). This is the first case for detecting molecular gas emission in GRB hosts. The ratio of molecular gas to dust mass of the GRB 020819B site is significantly lower than those of the Milky Way and nearby star-forming galaxies, suggesting that the star-forming environment where the GRB occur is different from those in local galaxies. The possible reason is that much of the dense gas is dissipated by a strong interstellar ultraviolet radiation field.


2008 ◽  
Vol 4 (S254) ◽  
pp. 41-48
Author(s):  
Johan P. U. Fynbo ◽  
J. Xavier Prochaska ◽  
Jesper Sommer-Larsen ◽  
Miroslava Dessauges-Zavadsky ◽  
Palle Møller

AbstractWe test the hypothesis that the host galaxies of long-duration gamma-ray bursts (GRBs) as well as quasar-selected damped Lyman-α (DLA) systems are drawn from the population of UV-selected star-forming, highzgalaxies (generally referred to as Lyman-break galaxies). Specifically, we compare the metallicity distributions of the GRB and DLA populations against simple disk models where these galaxies are drawn randomly from the distribution of star-forming galaxies according to their star-formation rate and HI cross-section respectively. We find that it is possible to match both observational distributions assuming very simple and constrained relations between luminosity, metallicity, metallicity gradients and HI sizes. The simple model can be tested by observing the luminosity distribution of GRB host galaxies and by measuring the luminosity and impact parameters of DLA selected galaxies as a function of metallicity. Our results support the expectation that GRB and DLA samples, in contrast with magnitude limited surveys, provide an almost complete census of star-forming galaxies atz≈ 3.


2019 ◽  
Vol 623 ◽  
pp. A26 ◽  
Author(s):  
J. T. Palmerio ◽  
S. D. Vergani ◽  
R. Salvaterra ◽  
R. L. Sanders ◽  
J. Japelj ◽  
...  

Aims. Long gamma-ray bursts (LGRB) have been proposed as promising tracers of star formation owing to their association with the core-collapse of massive stars. Nonetheless, previous studies we carried out at z <  1 support the hypothesis that the conditions necessary for the progenitor star to produce an LGRB (e.g. low metallicity), were challenging the use of LGRBs as star-formation tracers, at least at low redshift. The goal of this work is to characterise the population of host galaxies of LGRBs at 1 < z < 2, investigate the conditions in which LGRBs form at these redshifts and assess their use as tracers of star formation. Methods. We performed a spectro-photometric analysis to determine the stellar mass, star formation rate, specific star formation rate and metallicity of the complete, unbiased host galaxy sample of the Swift/BAT6 LGRB sample at 1 < z < 2. We compared the distribution of these properties to the ones of typical star-forming galaxies from the MOSDEF and COSMOS2015 Ultra Deep surveys, within the same redshift range. Results. We find that, similarly to z <  1, LGRBs do not directly trace star formation at 1 < z < 2, and they tend to avoid high-mass, high-metallicity host galaxies. We also find evidence for an enhanced fraction of starbursts among the LGRB host sample with respect to the star-forming population of galaxies. Nonetheless we demonstrate that the driving factor ruling the LGRB efficiency is metallicity. The LGRB host distributions can be reconciled with the ones expected from galaxy surveys by imposing a metallicity upper limit of logOH ∼ 8.55. We can determine upper limits on the fraction of super-solar metallicity LGRB host galaxies of ∼20%, 10% at z <  1, 1 <  z <  2, respectively. Conclusions. Metallicity rules the LGRB production efficiency, which is stifled at Z ≳ 0.7 Z⊙. Under this hypothesis we can expect LGRBs to trace star formation at z >  3, once the bulk of the star forming galaxy population are characterised by metallicities below this limit. The role played by metallicity can be explained by the conditions necessary for the progenitor star to produce an LGRB. The moderately high metallicity threshold found is in agreement with the conditions necessary to rapidly produce a fast-rotating Wolf-Rayet stars in close binary systems, and could be accommodated by single star models under chemically homogeneous mixing with very rapid rotation and weak magnetic coupling.


Author(s):  
Alan Wells ◽  
Ralph A.M.J Wijers ◽  
Martin J Rees

Gamma-ray bursts (GRBs) are immensely powerful explosions, originating at cosmological distances, whose outbursts persist for durations ranging from milliseconds to tens of seconds or more. In these brief moments, the explosions radiate more energy than the Sun will release in its entire 10 Gyr lifetime. Current theories attribute these phenomena to the final collapse of a massive star, or the coalescence of a binary system induced by gravity wave emission. New results from Swift and related programmes offer fresh understanding of the physics of GRBs, and of the local environments and host galaxies of burst progenitors. Bursts found at very high red shifts are new tools for exploring the intergalactic medium, the first stars and the earliest stages of galaxy formation. This Royal Society Discussion Meeting has brought together leading figures in the field, together with young researchers and students, to discuss and review the latest results from NASA's Swift Gamma-ray Burst Observatory and elsewhere, and to examine their impact on current understanding of the observed phenomena.


2012 ◽  
Vol 8 (S292) ◽  
pp. 190-190
Author(s):  
J. M. Chen ◽  
L. W. Jia ◽  
E. W. Liang

AbstractGRBs are the most luminous events in the Universe. They are detectable from local to high-z universe and may serve as probes for high-z galaxies (e.g., Savaglio et al. 2009; Kewley & Dopita 2002). We compile the observations for 61 GRB host galaxies from literature. Their redshifts range from 0.0085 to 6.295. We present the statistical properties of the GRB host galaxies, including the stellar mass (M*), star-forming rate (SFR), metallicity (Z), extinction (AV), and neutral hydrogen column density (NH). We explore possible correlations among the properties of gamma-ray burst host galaxies and their cosmic evolution with observations of 61 GRB host galaxies. Our results are shown in Figure 1. A clear Z-M* relation is found in our sample, which is Z ~ M0.4. The host galaxies of local GRBs with detection of accompanied supernovae also share the same relation with high-z GRB host galaxies. A trend that a more massive host galaxy tends to have a higher star-formation rate is found. The best linear fit gives a tentative relation, i.e, SFR ~ M0.75. No any correlation is found between AV and NH. A GRB host galaxy at a higher redshift also tends to have a higher SFR. Even in the same redshift, the SFR may vary over three orders of magnitude. The metallicity of the GRB host galaxies is statistically higher than that of the QSO DLAs. The full version of our results please refer to Chen et al. (2012).


2012 ◽  
Vol 8 (S290) ◽  
pp. 263-264
Author(s):  
Liang Li ◽  
En-Wei Liang ◽  
He Gao ◽  
Bing Zhang

AbstractWell-sampled optical lightcurves of 146 gamma-ray bursts (GRBs) are compiled from literature. We identify possible emission components based on our empirical fits and present statistical analysis for these components. We find that the flares are related to prompt emission, suggesting that they could have the same origin in different episodes. The shallow decay segment is not correlated with prompt gamma-rays. It likely signals a long-lasting injected wind from GRB central engines. Early after onset peak is closely related with prompt emission. The ambient medium density profile is likely n ∝ r−1. No correlation between the late re-brightening bump and prompt gamma-rays or the onset bump is found. They may be from another jet component.


Sign in / Sign up

Export Citation Format

Share Document