scholarly journals The distant (z = 0.471) radiogalaxy 3C 435 A with the integral field spectrograph TIGER

1995 ◽  
Vol 149 ◽  
pp. 250-253
Author(s):  
B. Rocca-Volmerange ◽  
G. Adam ◽  
P. Ferruit ◽  
R. Bacon

The distant radiogalaxies recently discovered at the most remote distances (z≥3.5) are among the best cosmological targets. However so various features caracterize these galaxies (red stellar energy distribution, huge emission lines, high density of galaxy companions, alignment of ultraviolet and radio axes, large degree of polarisation) that their structures are not simple to understand. Stellar populations will only become the best indicators of evolution of galaxies if these structures are clearly understood from a two-dimension spectroscopy on each image point. The integral field spectrograph TIGER is a unique instrument at the CFHT to give details on the nature and velocities of the various components of distant radiogalaxies.We present the observations with TIGER of an intermediate-redshift galaxy 3C435A (z=0.471) (Rocca-Volmerange et al, 1994). The two nebular lines [OII], [OIII] and the largely extended stellar continua are observable, allowing to date galaxy with the help of our evolution model. The present and past star formation activities and the origin of alignment will be thus analysed in terms of galaxy evolution.

2014 ◽  
Vol 10 (S309) ◽  
pp. 109-112
Author(s):  
J. T. Allen ◽  

AbstractThe Sydney–AAO Multi-object Integral field spectrograph (SAMI) Galaxy Survey is an ongoing project to obtain integral field spectroscopic observations of ∼3400 galaxies by mid-2016. Including the pilot survey, a total of ∼1000 galaxies have been observed to date, making the SAMI Galaxy Survey the largest of its kind in existence. This unique dataset allows a wide range of investigations into different aspects of galaxy evolution.The first public data from the SAMI Galaxy Survey, consisting of 107 galaxies drawn from the full sample, has now been released. By giving early access to SAMI data for the entire research community, we aim to stimulate research across a broad range of topics in galaxy evolution. As the sample continues to grow, the survey will open up a new and unique parameter space for galaxy evolution studies.


2006 ◽  
Vol 2 (S235) ◽  
pp. 136-136
Author(s):  
A. A. Smirnova ◽  
A. V. Moiseev

AbstractWe have studied the ionized gas and stellar kinematics in several galaxies with active nuclei and elongated radio structures using 3D spectroscopy. The observations were performed at the SAO RAS 6-m telescope with the integral-field spectrograph MPFS (Afanasiev et al. 2001) and with a scanning Fabry-Perot interferometer (FPI) in the multimode device SCORPIO (Afanasiev & Moiseev 2005). Based on these data the intensity maps and velocity fields in the different emission lines of the ionizing gas were constructed. Using the lines-ratio diagrams we tried to search a source of the gas ionization: an active nucleus, hot young stars or shock waves.


2014 ◽  
Vol 10 (S309) ◽  
pp. 21-28 ◽  
Author(s):  
J. Bland-Hawthorn

AbstractIn March 2013, the Sydney–AAO Multi-object Integral field spectrograph (SAMI) began a major survey of 3400 galaxies at the AAT, the largest of its kind to date. At the time of writing, over a third of the targets have been observed and the scientific impact has been immediate. The Manga galaxy survey has now started at the SDSS telescope and will target an even larger sample of nearby galaxies. In Australia, the community is now gearing up to deliver a major new facility called Hector that will allow integral field spectroscopy of 100 galaxies observed simultaneously. By the close of the decade, it will be possible to obtain integral field spectroscopy of 100,000 galaxies over 3000 square degrees of sky down to r=17 (median). Many of these objects will have HI imaging from the new ASKAP radio surveys. We discuss the motivation for such a survey and the use of new cosmological simulations that are properly matched to the integral field observations. The Hector survey will open up a new and unique parameter space for galaxy evolution studies.


2014 ◽  
Vol 10 (S309) ◽  
pp. 339-339
Author(s):  
Rogemar A. Riffel ◽  
Thaisa Storchi-Bergmann ◽  
Rogério Riffel

AbstractWe present two-dimensional (2D) near-infrared spectra of the inner 300×300 pc2 of the Seyfert 2 galaxy NGC 5929 at a spatial resolution of ~20 pc obtained with the Gemini Near infrared Integral Field Spectrograph (NIFS). We present 2D maps for the emission line flux distributions and kinematics and report the discovery of a linear structure ~300 pc in extent and of ~50 pc in width oriented perpendicular to the radio jet, showing broadened emission-line profiles.While over most of the field the emission-line profiles have full-widths-at-half-maximum (FWHM) of ~210 km/s, at a linear structure perpendicular do the radio jet the emission-line FWHMs are twice this value, and are due to two velocity components, one blueshifted and the other redshifted relative to the systemic velocity. We attribute these velocities to an outflow from the nucleus which is launched perpendicular to the radio jet. We reported the detection of this peculiar outflow in Riffel, Storchi-Bergmann & Riffel (2014a), where more details of the analysis can be found. Since, NGC 5929 has a Type 2 nucleus, this detection implies that: (1) both ionizing radiation and relativistic particles are escaping through holes in the torus perpendicular to the radio jet; and/or (2) the torus is also outflowing, as proposed by recent models of tori as winds from the outer parts of an accretion flow; or (3) the torus is absent in NGC 5929.At other locations the gas kinematics is dominated by rotation in a disk, although some evidences of interaction of the radio jet with the emitting gas are seen as a broadening of the line profiles at the locations of the radio structures.The flux distributions for the [P ii], [Fe ii], H i and H2 emission lines show that the line emission is more extended along the PA = 60/240^, extending to up to 1.5” to both sides of the nucleus, while to the perpendicular direction (PA = -30/150^) the emission is extended to 0.7” from the nucleus. The flux distributions of all emission lines show a good correlation with radio the radio structures, with the two peak of emission associated to the soutwestern and northeastern radio knots. Some differences are observed among distinct emission lines. While the [Fe ii] and H2 emission peak at the location of the soutwestern radio structure at 0.6” from the nucleus, the H i recombination lines present the their highest fluxes at the location of the northeastern radio hotspot at 0.5” from the nucleus. Another difference is that the H2 emission is less collimated than that for other lines, being more extended perpendicularly to the radio jet. A detailed analysis of the line emission and kinematics will be presented in Riffel, Storchi-Bergmann & Riffel (2014b).


2011 ◽  
Vol 20 (3) ◽  
Author(s):  
A. Smirnova ◽  
A. Moiseev ◽  
I. Katkov ◽  
V. Afanasiev

AbstractWe report the preliminary results of a kinematical study of three Seyfert galaxies selected from a sample of nearby active galactic nuclei observed using 3D spectroscopy. The observations were performed at the prime focus of the 6 m telescope of SAO RAS with the integral-field spectrograph MPFS and with a scanning Fabry-Pérot interferometer, installed on the multimode device SCORPIO. Based on these data, the monochromatic maps and velocity fields in different emission lines were constructed. We have detected the nuclear outflow or ionized gas motions associated with a radio jet in all the circumnuclear regions of these galaxies.


2009 ◽  
Vol 5 (S267) ◽  
pp. 334-334
Author(s):  
Dading Nugroho ◽  
Knud Jahnke ◽  
Bernd Husemann ◽  
Katherine Inskip ◽  
Sebastian F. Sánchez ◽  
...  

We observed a volume-limited sample of 19 luminous type 1 QSO host galaxies at MV ~ −23 mag and redshift 0.06 < z < 0.2 (Jahnke et al. 2004) using the VLT/VIMOS Integral Field Spectrograph. After removal of the QSO contribution (using the method of Husemann et al. 2008), we construct 2D intensity maps and gas velocity fields of the host galaxies in the Hα and [O iii] emission lines. Two representative cases are shown in Figure 1.


2020 ◽  
Vol 638 ◽  
pp. A53
Author(s):  
Nastaran Fazeli ◽  
Gerold Busch ◽  
Andreas Eckart ◽  
Françoise Combes ◽  
Persis Misquitta ◽  
...  

Gas inflow processes in the vicinity of galactic nuclei play a crucial role in galaxy evolution and supermassive black hole growth. Exploring the central kiloparsec of galaxies is essential to shed more light on this subject. We present near-infrared H- and K-band results of the nuclear region of the nearby galaxy NGC 1326, observed with the integral-field spectrograph SINFONI mounted on the Very Large Telescope. The field of view covers 9″ × 9″ (650 × 650 pc2). Our work is concentrated on excitation conditions, morphology, and stellar content. The nucleus of NGC 1326 was classified as a LINER, however in our data we observed an absence of ionised gas emission in the central r ∼ 3″. We studied the morphology by analysing the distribution of ionised and molecular gas, and thereby detected an elliptically shaped, circum-nuclear star-forming ring at a mean radius of 300 pc. We estimate the starburst regions in the ring to be young with dominating ages of < 10 Myr. The molecular gas distribution also reveals an elongated east to west central structure about 3″ in radius, where gas is excited by slow or mild shock mechanisms. We calculate the ionised gas mass of 8 × 105 M⊙ completely concentrated in the nuclear ring and the warm molecular gas mass of 187 M⊙, from which half is concentrated in the ring and the other half in the elongated central structure. The stellar velocity fields show pure rotation in the plane of the galaxy. The gas velocity fields show similar rotation in the ring, but in the central elongated H2 structure they show much higher amplitudes and indications of further deviation from the stellar rotation in the central 1″ aperture. We suggest that the central 6″ elongated H2 structure might be a fast-rotating central disc. The CO(3–2) emission observations with the Atacama Large Millimeter/submillimeter Array reveal a central 1″ torus. In the central 1″ of the H2 velocity field and residual maps, we find indications for a further decoupled structure closer to a nuclear disc, which could be identified with the torus surrounding the supermassive black hole.


2020 ◽  
Vol 15 (S359) ◽  
pp. 454-456
Author(s):  
T. V. Ricci ◽  
J. E. Steiner ◽  
R. B. Menezes

AbstractIn this work, we present preliminary results regarding the nuclear emission lines of a statistically complete sample of 56 early-type galaxies that are part of the Deep Integral Field Spectroscopy View of Nuclei of Galaxies (DIVING3D) Project. All early type galaxies (ETGs) were observed with the Gemini Multi-Object Spectrograph Integral Field Unit (GMOS-IFU) installed on the Gemini South Telescope. We detected emission lines in 93% of the sample, mostly low-ionization nuclear emission-line region galaxies (LINERs). We did not find Transition Objects nor H II regions in the sample. Type 1 objects are seen in ∼23% of the galaxies.


2010 ◽  
Author(s):  
Katherine B. Follette ◽  
Laird M. Close ◽  
Derek Kopon ◽  
Jared R. Males ◽  
Victor Gasho ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document