scholarly journals Link of the Hipparcos Stellar Reference Frame to the Distant Quasars

1998 ◽  
Vol 164 ◽  
pp. 381-382 ◽  
Author(s):  
J.-F. Lestrade ◽  
R.A. Preston ◽  
D.L. Jones ◽  
R.B. Phillips ◽  
A.E.E. Rogers ◽  
...  

AbstractThe link of the Hipparcos and VLBI extragalactic reference frames has been achieved with a precision of 0.0005″ in global orientation at the epoch of the catalogue (1991.25) and of 0.0003″/yr in rate of rotation by VLBI observations of 12 radio-emitting stars.

1993 ◽  
Vol 156 ◽  
pp. 159-171
Author(s):  
C. Ma ◽  
J. L. Russell

Dual frequency Mark III VLBI observations acquired since 1979 by several geodetic and astrometric observing programs have been used to establish precise celestial and terrestrial reference frames. The program to establish a uniformly distributed celestial reference frame of ∼400 compact radio sources with optical counterparts was begun in 1987. Some 700 sources have been considered as part of this effort and a preliminary list of ∼400 has been observed. At present, 308 sources have formal 1σ errors less than 1 mas in right ascension and 308 have similar precision in declination. The astrometric results include some data acquired for geodetic purposes. The geodetic results using data to September, 1992 include the positions of 105 sites with formal 1σ horizontal errors generally less than 1 cm at 1992.6 and the velocities of 64 sites with formal 1σ horizontal errors generally better than 2 mm/yr.


1986 ◽  
Vol 109 ◽  
pp. 779-788 ◽  
Author(s):  
Jean-Francois Lestrade ◽  
Robert A. Preston ◽  
Arthur E. Niell ◽  
Robert L. Mutel ◽  
Robert B. Phillips

VLBI observations of bright radio stars have been initiated in an attempt to measure the positions and proper motions of their radio components in order to tie the future HIPPARCOS stellar frame to a VLBI extragalactic reference frame. Through VLBI observations of a sample of 20 known radio stars we have identified 11 stars that should be appropriate for both astrometric VLBI and HIPPARCOS observations. Our measurements indicate that the angular extent of their radio emitting regions is small, i.e. < 3 milliarcseconds for 7 of them. Most of these radio stars belong to the RS Canum Venaticorum class of binary systems.


1998 ◽  
Vol 11 (1) ◽  
pp. 281-286
Author(s):  
C. Ma ◽  
E.F. Arias ◽  
T.M. Eubanks ◽  
A.L. Fey ◽  
A.-M. Gontier ◽  
...  

The goal of the work described here is to create the definitive catalogue for the new International Celestial Reference Frame (ICRF) using the best data and methods available at the time the work was done. This work is the joint cooperative effort of a subgroup of the IAU Working Group on Reference Frames which was formed expressly for this purpose in February 1995. The authors of this report constituted the subgroup. A fuller account of this report can be found in the introduction to the ICRF catalog (IERS 1997). The ICRF of 608 sources presented here is based on essentially all the VLBI observations accu-mulated over about 15 years in several worldwide programs. Dual frequency Mark III data have both geodetic and astrometric applications. Most of the data (95% of nearly 2 million observations) were acquired primarily for geodetic purposes. The major geodetic programs include: NASA’s Crustal Dynamics Project/Space Geodesy Program and USNO’s NAVEX sessions for the terrestrial reference frame, as well as IRIS, NAVNET and NEOS sessions for monitoring Earth rotation. The geodetic programs have used the brightest radio sources, gradually concentrating on the most com-pact as sensitivity improved. These geodetic sources were also the foundation of astrometric work because of the large number of observations for the ~150 most commonly used. The astrometric programs which densify the sky include the Radio-Optical Reference Frame sessions done by US Naval Research Laboratory (NRL) and USNO and the space navigation efforts of Jet Propulsion Laboratory (JPL).


1996 ◽  
Vol 172 ◽  
pp. 491-496
Author(s):  
J. Vondrák

The indirect method of linking the Hipparcos reference frame to the frame defined by extragalactic sources is described. To this end, two independent time series of Earth orientation parameters observed by two different techniques with respect to the two reference frames are used: a) Optical astrometry observations (referred to Hipparcos stars), b) VLBI observations (referred to extragalactic objects). The parallel use of both techniques during the last decade enables to determine the orientation of the two reference frames at a fixed epoch and their mutual slow rotation with precision of at least 1mas and 1mas/year, respectively. In order not to raise confusion, the potentiality of the method is demonstrated on the example based on the star catalogues originally used at the participating observatories, not on any of the existing preliminary versions of the Hipparcos catalog.


2018 ◽  
Vol 15 (3) ◽  
pp. 229-236 ◽  
Author(s):  
Gennaro Ruggiero ◽  
Alessandro Iavarone ◽  
Tina Iachini

Objective: Deficits in egocentric (subject-to-object) and allocentric (object-to-object) spatial representations, with a mainly allocentric impairment, characterize the first stages of the Alzheimer's disease (AD). Methods: To identify early cognitive signs of AD conversion, some studies focused on amnestic-Mild Cognitive Impairment (aMCI) by reporting alterations in both reference frames, especially the allocentric ones. However, spatial environments in which we move need the cooperation of both reference frames. Such cooperating processes imply that we constantly switch from allocentric to egocentric frames and vice versa. This raises the question of whether alterations of switching abilities might also characterize an early cognitive marker of AD, potentially suitable to detect the conversion from aMCI to dementia. Here, we compared AD and aMCI patients with Normal Controls (NC) on the Ego-Allo- Switching spatial memory task. The task assessed the capacity to use switching (Ego-Allo, Allo-Ego) and non-switching (Ego-Ego, Allo-Allo) verbal judgments about relative distances between memorized stimuli. Results: The novel finding of this study is the neat impairment shown by aMCI and AD in switching from allocentric to egocentric reference frames. Interestingly, in aMCI when the first reference frame was egocentric, the allocentric deficit appeared attenuated. Conclusion: This led us to conclude that allocentric deficits are not always clinically detectable in aMCI since the impairments could be masked when the first reference frame was body-centred. Alongside, AD and aMCI also revealed allocentric deficits in the non-switching condition. These findings suggest that switching alterations would emerge from impairments in hippocampal and posteromedial areas and from concurrent dysregulations in the locus coeruleus-noradrenaline system or pre-frontal cortex.


Author(s):  
Steven M. Weisberg ◽  
Anjan Chatterjee

Abstract Background Reference frames ground spatial communication by mapping ambiguous language (for example, navigation: “to the left”) to properties of the speaker (using a Relative reference frame: “to my left”) or the world (Absolute reference frame: “to the north”). People’s preferences for reference frame vary depending on factors like their culture, the specific task in which they are engaged, and differences among individuals. Although most people are proficient with both reference frames, it is unknown whether preference for reference frames is stable within people or varies based on the specific spatial domain. These alternatives are difficult to adjudicate because navigation is one of few spatial domains that can be naturally solved using multiple reference frames. That is, while spatial navigation directions can be specified using Absolute or Relative reference frames (“go north” vs “go left”), other spatial domains predominantly use Relative reference frames. Here, we used two domains to test the stability of reference frame preference: one based on navigating a four-way intersection; and the other based on the sport of ultimate frisbee. We recruited 58 ultimate frisbee players to complete an online experiment. We measured reaction time and accuracy while participants solved spatial problems in each domain using verbal prompts containing either Relative or Absolute reference frames. Details of the task in both domains were kept as similar as possible while remaining ecologically plausible so that reference frame preference could emerge. Results We pre-registered a prediction that participants would be faster using their preferred reference frame type and that this advantage would correlate across domains; we did not find such a correlation. Instead, the data reveal that people use distinct reference frames in each domain. Conclusion This experiment reveals that spatial reference frame types are not stable and may be differentially suited to specific domains. This finding has broad implications for communicating spatial information by offering an important consideration for how spatial reference frames are used in communication: task constraints may affect reference frame choice as much as individual factors or culture.


2020 ◽  
Author(s):  
Vasil Dinev Penchev

A generalized and unifying viewpoint to both general relativity and quantum mechanics and information is investigated. It may be described as a generaliztion of the concept of reference frame from mechanics to thermodynamics, or from a reference frame linked to an element of a system, and thus, within it, to another reference frame linked to the whole of the system or to any of other similar systems, and thus, out of it. Furthermore, the former is the viewpoint of general relativity, the latter is that of quantum mechanics and information.Ciclicity in the manner of Nicolas Cusanus (Nicolas of Cusa) is complemented as a fundamental and definitive property of any totality, e.g. physically, that of the universe. It has to contain its externality within it somehow being namely the totality. This implies a seemingly paradoxical (in fact, only to common sense rather logically and mathematically) viewpoint for the universe to be repesented within it as each one quant of action according to the fundamental Planck constant.That approach implies the unification of gravity and entanglement correspondiing to the former or latter class of reference frames. An invariance, more general than Einstein's general covariance is to be involved as to both classes of reference frames unifying them. Its essence is the unification of the discrete and cotnitinuous (smooth). That idea underlies implicitly quantum mechanics for Bohr's principle that it study the system of quantum microscopic entities and the macroscopic apparatus desribed uniformly by the smmoth equations of classical physics.e


2021 ◽  
Author(s):  
Daniel Mota ◽  
Erick Alves ◽  
Elisabetta Tedeschi

Manuscript submitted to the Twenty-second IEEE Workshop on Control and Modeling for Power Electronics (COMPEL 2021).<div>Abstract: Dual-sequence current controllers of voltage source converters (VSCs) feature two separate rotating reference frames (RRFs), commonly named dq frames, and rely on techniques that isolate the positive and negative sequences of three-phase measurements. One of these techniques is the delayed signal cancellation (DSC). It is performed in the stationary reference frame (SRF), also known as αβ frame. The DSC combines old values of one axis with new values of the other axis of the SRF. The results are, then, transformed into the RRFs for use in the current controller. This filtering process introduces an extra layer of complexity for dual-sequence current controllers, which could otherwise operate solely in the RRFs. This paper introduces a frequency adaptive DSC method that operates directly in the RRF. Moreover, an averaging of two of the proposed DSC filters with contiguous integer delays is employed for reducing discretization errors caused by grid frequency excursions. A formal proof of the equivalence between the αβ and dq DSC methods is presented. Furthermore, computer simulations of a case study support the interpretation of the results.</div>


2021 ◽  
Author(s):  
Daniel Mota ◽  
Erick Alves ◽  
Elisabetta Tedeschi

Manuscript submitted to the Twenty-second IEEE Workshop on Control and Modeling for Power Electronics (COMPEL 2021).<div>Abstract: Dual-sequence current controllers of voltage source converters (VSCs) feature two separate rotating reference frames (RRFs), commonly named dq frames, and rely on techniques that isolate the positive and negative sequences of three-phase measurements. One of these techniques is the delayed signal cancellation (DSC). It is performed in the stationary reference frame (SRF), also known as αβ frame. The DSC combines old values of one axis with new values of the other axis of the SRF. The results are, then, transformed into the RRFs for use in the current controller. This filtering process introduces an extra layer of complexity for dual-sequence current controllers, which could otherwise operate solely in the RRFs. This paper introduces a frequency adaptive DSC method that operates directly in the RRF. Moreover, an averaging of two of the proposed DSC filters with contiguous integer delays is employed for reducing discretization errors caused by grid frequency excursions. A formal proof of the equivalence between the αβ and dq DSC methods is presented. Furthermore, computer simulations of a case study support the interpretation of the results.</div>


Sign in / Sign up

Export Citation Format

Share Document