scholarly journals Limits on the optical magnitude of PSR 1821-24 in M28

2000 ◽  
Vol 177 ◽  
pp. 313-314
Author(s):  
F. K. Sutaria

AbstractThe detection of a pulsed X-ray counterpart (RX J1824.2-2R52P) of the 3.05 ms pulsar PSR 1821-24, suggests the possibility of a part of the rotational energy loss of this high spindown rate pulsar being in the optical band. Archival HST data for M28 is used here to set upper limits on the optical V-band magnitude of PSR 1821-24. The optical limit extends the multiwavelength observations for this source and provides a constraint for theoretical models of pulsar emission.

2000 ◽  
Vol 195 ◽  
pp. 431-432
Author(s):  
F. K. Sutaria

The 3-ms, X-ray pulsar RX J1824.2-2R52P has been identified at the 2-σ level as a possible X-ray counterpart of the radio pulsar PSR 1821-24. The present work uses archival HST data for M28 to set upper limits on the optical V-band magnitude of PSR 1821–24 / RX J1824.2-2R452P. The optical limit extends the multiwavelength observations for this source and would provide constraints for theoretical models of pulsar emission.


2018 ◽  
Vol 618 ◽  
pp. A27 ◽  
Author(s):  
M. C. Powell ◽  
B. Husemann ◽  
G. R. Tremblay ◽  
M. Krumpe ◽  
T. Urrutia ◽  
...  

Aims. We probe the radiatively-efficient, hot wind feedback mode in two nearby luminous unobscured (type 1) AGN from the Close AGN Reference Survey (CARS), which show intriguing kpc-scale arc-like features of extended [O III]ionized gas as mapped with VLT-MUSE. We aimed to detect hot gas bubbles that would indicate the existence of powerful, galaxy-scale outflows in our targets, HE 0227–0931 and HE 0351+0240, from deep (200 ks) Chandra observations. Methods. By measuring the spatial and spectral properties of the extended X-ray emission and comparing with the sub kpc-scale IFU data, we are able to constrain feedback scenarios and directly test if the ionized gas is due to a shocked wind. Results. No extended hot gas emission on kpc-scales was detected. Unless the ambient medium density is low (n H  ∼  1 cm−3 at 100 pc), the inferred upper limits on the extended X-ray luminosities are well below what is expected from theoretical models at matching AGN luminosities. Conclusions. We conclude that the highly-ionized gas structures on kpc scales are not inflated by a hot outflow in either target, and instead are likely caused by photoionization of pre-existing gas streams of different origins. Our nondetections suggest that extended X-ray emission from an AGN-driven wind is not universal, and may lead to conflicts with current theoretical predictions.


2021 ◽  
Vol 922 (1) ◽  
pp. 71
Author(s):  
R. Abbott ◽  
T. D. Abbott ◽  
S. Abraham ◽  
F. Acernese ◽  
K. Ackley ◽  
...  

Abstract We present a search for continuous gravitational-wave emission due to r-modes in the pulsar PSR J0537–6910 using data from the LIGO–Virgo Collaboration observing run O3. PSR J0537–6910 is a young energetic X-ray pulsar and is the most frequent glitcher known. The inter-glitch braking index of the pulsar suggests that gravitational-wave emission due to r-mode oscillations may play an important role in the spin evolution of this pulsar. Theoretical models confirm this possibility and predict emission at a level that can be probed by ground-based detectors. In order to explore this scenario, we search for r-mode emission in the epochs between glitches by using a contemporaneous timing ephemeris obtained from NICER data. We do not detect any signals in the theoretically expected band of 86–97 Hz, and report upper limits on the amplitude of the gravitational waves. Our results improve on previous amplitude upper limits from r-modes in J0537-6910 by a factor of up to 3 and place stringent constraints on theoretical models for r-mode-driven spin-down in PSR J0537–6910, especially for higher frequencies at which our results reach below the spin-down limit defined by energy conservation.


2022 ◽  
Vol 924 (2) ◽  
pp. 51
Author(s):  
Zara Abdurashidova ◽  
James E. Aguirre ◽  
Paul Alexander ◽  
Zaki S. Ali ◽  
Yanga Balfour ◽  
...  

Abstract Recently, the Hydrogen Epoch of Reionization Array (HERA) has produced the experiment’s first upper limits on the power spectrum of 21 cm fluctuations at z ∼ 8 and 10. Here, we use several independent theoretical models to infer constraints on the intergalactic medium (IGM) and galaxies during the epoch of reionization from these limits. We find that the IGM must have been heated above the adiabatic-cooling threshold by z ∼ 8, independent of uncertainties about IGM ionization and the radio background. Combining HERA limits with complementary observations constrains the spin temperature of the z ∼ 8 neutral IGM to 27 K 〈 T ¯ S 〉 630 K (2.3 K 〈 T ¯ S 〉 640 K) at 68% (95%) confidence. They therefore also place a lower bound on X-ray heating, a previously unconstrained aspects of early galaxies. For example, if the cosmic microwave background dominates the z ∼ 8 radio background, the new HERA limits imply that the first galaxies produced X-rays more efficiently than local ones. The z ∼ 10 limits require even earlier heating if dark-matter interactions cool the hydrogen gas. If an extra radio background is produced by galaxies, we rule out (at 95% confidence) the combination of high radio and low X-ray luminosities of L r,ν /SFR > 4 × 1024 W Hz−1 M ⊙ − 1 yr and L X /SFR < 7.6 × 1039 erg s−1 M ⊙ − 1 yr. The new HERA upper limits neither support nor disfavor a cosmological interpretation of the recent Experiment to Detect the Global EOR Signature (EDGES) measurement. The framework described here provides a foundation for the interpretation of future HERA results.


2017 ◽  
Vol 470 (1) ◽  
pp. 1253-1258 ◽  
Author(s):  
Ü. Ertan ◽  
Ş. Çalışkan ◽  
M. A. Alpar

Abstract The optical excess in the spectra of dim isolated neutron stars (XDINs) is a significant fraction of their rotational energy loss rate. This is strikingly different from the situation in isolated radio pulsars. We investigate this problem in the framework of the fallback disc model. The optical spectra can be powered by magnetic stresses on the innermost disc matter, as the energy dissipated is emitted as blackbody radiation mainly from the inner rim of the disc. In the fallback disc model, XDINs are the sources evolving in the propeller phase with similar torque mechanisms. In this model, the ratio of the total magnetic work that heats up the inner disc matter is expected to be similar for different XDINs. Optical luminosities that are calculated consistently with the optical spectra and the theoretical constraints on the inner disc radii give very similar ratios of the optical luminosity to the rotational energy loss rate for all these sources. These ratios indicate that a significant fraction of the magnetic torque heats up the disc matter while the remaining fraction expels disc matter from the system. For XDINs, the contribution of heating by X-ray irradiation to the optical luminosity is negligible in comparison with the magnetic heating. The correlation we expect between the optical luminosities and the rotational energy loss rates of XDINs can be a property of the systems with low X-ray luminosities, in particular those in the propeller phase.


1994 ◽  
Vol 142 ◽  
pp. 789-795
Author(s):  
M. P. Ulmer

AbstractWe report on Compton Gamma Ray Observatory observations of six detected pulsars: the Crab, Vela, Geminga, PSR B1509-58, PSR B1706-44, and PSR B1055-52. We combine these data with radio data and X-ray data to provide an overview of what is known about gamma-ray pulsars. We discuss light curves, spectra, and radio/gamma-ray phase offsets, and present several tentative patterns in the data. These include constant phase with γ-ray energy; a correlation between gamma-ray and X-ray luminosity; an anticorrelation between the gamma-ray luminosity and the efficiency in converting rotational energy loss into gamma-ray flux; and a correlation between the pulsar period and radio/gamma-ray phase offset. We also suggest that the emission models that have been proposed to date cannot explain the similarities of the average gamma-ray light curves observed over a wide range of energies. Further, unless a narrow beam is assumed, pulsars such as PSR B1055-52 and Geminga appear to be radiating a significant fraction of their rotational energy loss in the form of gamma rays.Subject headings: gamma rays: observations — pulsars: general — radio continuum: stars — X-rays: stars


2018 ◽  
Vol 612 ◽  
pp. A10 ◽  
Author(s):  
◽  
H. Abdalla ◽  
A. Abramowski ◽  
F. Aharonian ◽  
F. Ait Benkhali ◽  
...  

Context. Microquasars are potential γ-ray emitters. Indications of transient episodes of γ-ray emission were recently reported in at least two systems: Cyg X-1 and Cyg X-3. The identification of additional γ-ray-emitting microquasars is required to better understand how γ-ray emission can be produced in these systems.Aim. Theoretical models have predicted very high-energy (VHE) γ-ray emission from microquasars during periods of transient outburst. Observations reported herein were undertaken with the objective of observing a broadband flaring event in the γ-ray and X-ray bands.Methods. Contemporaneous observations of three microquasars, GRS 1915+105, Circinus X-1, and V4641 Sgr, were obtained using the High Energy Spectroscopic System (H.E.S.S.) telescope array and the Rossi X-ray Timing Explorer (RXTE) satellite. X-ray analyses for each microquasar were performed and VHE γ-ray upper limits from contemporaneous H.E.S.S. observations were derived.Results. No significant γ-ray signal has been detected in any of the three systems. The integral γ-ray photon flux at the observational epochs is constrained to be I(>560 GeV) < 7.3 × 10−13 cm−2 s−1, I(>560 GeV ) < 1.2 × 10−12 cm−2 s−1, and I(>240 GeV) < 4.5 × 10−12 cm−2 s−1 for GRS 1915+105, Circinus X-1, and V4641 Sgr, respectively.Conclusions. The γ-ray upper limits obtained using H.E.S.S. are examined in the context of previous Cherenkov telescope observations of microquasars. The effect of intrinsic absorption is modelled for each target and found to have negligible impact on the flux of escaping γ-rays. When combined with the X-ray behaviour observed using RXTE, the derived results indicate that if detectable VHE γ-ray emission from microquasars is commonplace, then it is likely to be highly transient.


Author(s):  
R. F. Egerton

An important parameter governing the sensitivity and accuracy of elemental analysis by electron energy-loss spectroscopy (EELS) or by X-ray emission spectroscopy is the signal/noise ratio of the characteristic signal.


Author(s):  
D. E. Johnson ◽  
S. Csillag

Recently, the applications area of analytical electron microscopy has been extended to include the study of Extended Energy Loss Fine Structure (EXELFS). Modulations past an ionization edge in the energy loss spectrum (EXELFS), contain atomic fine structure information similar to Extended X-ray Absorbtion Fine Structure (EXAFS). At low momentum transfer the main contribution to these modulations comes from interference effects between the outgoing excited inner shell electron waves and electron waves backscattered from the surrounding atoms. The ability to obtain atomic fine structure information (such as interatomic distances) combined with the spatial resolution of an electron microscope is unique and makes EXELFS an important microanalytical technique.


Sign in / Sign up

Export Citation Format

Share Document