scholarly journals Mass-Losing Peculiar Red Giants: The Comparison Between Theory and Observations

1989 ◽  
Vol 106 ◽  
pp. 339-347
Author(s):  
M. Jura

AbstractThe mass loss from evolved red giants is considered. It seems that red giants on the Asymptotic Giant Branch (AGB) are losing between 3 and 6 10-4 MΘ kpc-2 yr-1 in the solar neighborhood. If all the main sequence stars between 1 and 5 MΘ ultimately evolve into white dwarfs with masses of 0.7 MΘ the predicted mass loss rate in the solar neighborhood from these stars is 8 10-4 MΘ kpc-2 yr-1. Although there are still uncertainties, it appears that there is no strong disagreement between theory and observation. However, it could also be that we have not yet identified much of the source of the mass-loss from pre-white dwarf stars.

2020 ◽  
Vol 637 ◽  
pp. A91 ◽  
Author(s):  
I. El Mellah ◽  
J. Bolte ◽  
L. Decin ◽  
W. Homan ◽  
R. Keppens

Context. The late evolutionary phase of low- and intermediate-mass stars is strongly constrained by their mass-loss rate, which is orders of magnitude higher than during the main sequence. The wind surrounding these cool expanded stars frequently shows nonspherical symmetry, which is thought to be due to an unseen companion orbiting the donor star. The imprints left in the outflow carry information about the companion and also the launching mechanism of these dust-driven winds. Aims. We study the morphology of the circumbinary envelope and identify the conditions of formation of a wind-captured disk around the companion. Long-term orbital changes induced by mass loss and mass transfer to the secondary are also investigated. We pay particular attention to oxygen-rich, that is slowly accelerating, outflows in order to look for systematic differences between the dynamics of the wind around carbon and oxygen-rich asymptotic giant branch (AGB) stars. Methods. We present a model based on a parametrized wind acceleration and a reduced number of dimensionless parameters to connect the wind morphology to the properties of the underlying binary system. Thanks to the high performance code MPI-AMRVAC, we ran an extensive set of 72 three-dimensional hydrodynamics simulations of a progressively accelerating wind propagating in the Roche potential of a mass-losing evolved star in orbit with a main sequence companion. The highly adaptive mesh refinement that we used, enabled us to resolve the flow structure both in the immediate vicinity of the secondary, where bow shocks, outflows, and wind-captured disks form, and up to 40 orbital separations, where spiral arms, arcs, and equatorial density enhancements develop. Results. When the companion is deeply engulfed in the wind, the lower terminal wind speeds and more progressive wind acceleration around oxygen-rich AGB stars make them more prone than carbon-rich AGB stars to display more disturbed outflows, a disk-like structure around the companion, and a wind concentrated in the orbital plane. In these configurations, a large fraction of the wind is captured by the companion, which leads to a significant shrinking of the orbit over the mass-loss timescale, if the donor star is at least a few times more massive than its companion. In the other cases, an increase of the orbital separation is to be expected, though at a rate lower than the mass-loss rate of the donor star. Provided the companion has a mass of at least a tenth of the mass of the donor star, it can compress the wind in the orbital plane up to large distances. Conclusions. The grid of models that we computed covers a wide scope of configurations: We vary the terminal wind speed relative to the orbital speed, the extension of the dust condensation region around the cool evolved star relative to the orbital separation, and the mass ratio, and we consider a carbon-rich and an oxygen-rich donor star. It provides a convenient frame of reference to interpret high-resolution maps of the outflows surrounding cool evolved stars.


1985 ◽  
Vol 87 ◽  
pp. 453-469
Author(s):  
G. Michaud

AbstractIn the absence of mass loss, diffusion leads to underabundances of He in main sequence stars. Because of a very strong observational link with Ap and He weak stars, it has however been suggested that diffusion is the explanation for the He rich stars of the upper main sequence. This requires a mass loss rate of 10−12 Mo yr−1 or slightly lower. The mass loss rate must decrease as Teff increases. Magnetic fields must apparently be involved to reduce the mass loss rate. Since this model predicts that the CNO abundances should be normal in the cooler He rich stars, it leads to a clear observational test. Detailed calculations should be made to confirm the importance of this test. The effects of separation in the wind, the atmosphere and the envelope are discussed to conclude that separation in the atmosphere is likely to be most important. The importance of diffusion for He rich white dwarfs and horizontal branch stars are briefly discussed.


Author(s):  
Noam Soker

I review some aspects related to the influence of planets on the evolution of stars before and beyond the main sequence. Some processes include the tidal destruction of a planet on to a very young main sequence star, on to a low mass main sequence star, and on to a brown dwarf. This process releases gravitational energy that might be observed as a faint intermediate luminosity optical transient (ILOT) event. I then summarize the view that some elliptical planetary nebulae are shaped by planets. When the planet interacts with a low mass upper asymptotic giant branch (AGB) star it both enhances the mass loss rate and shapes the wind to form an elliptical planetary nebula, mainly by spinning up the envelope and by exciting waves in the envelope. If no interaction with a companion, stellar or sub-stellar, takes place beyond the main sequence, the star is termed a Jsolated star, and its mass loss rates on the giant branches are likely to be much lower than what is traditionally assumed.


Author(s):  
J. Bohigas

With the best data, I find that nearly all 0.5 to 1.2 M main sequence stars converge to a single rotational mass-dependent sequence after 750 Myr; when M > 0.8 M_, most of them converge in ≈ 120 Myr. If stars rotate as rigid bodies, most have angular momenta within clear bounds. The lower bound defines a terminal main sequence rotational isochrone, the upper one coincides with slow rotators from the Pleiades; stars from Praesepe delineate a third one. Mass dependent exponential relationships between angular momentum and age are determined. Age estimates based on the angular momentum are acceptable for stars older than 750 Myr and with M > 0.6− 0.7 M_⨀. The Rossby number indicates that the Parker dynamo may cease early on in stars with M/M_≥ 1.1. An empirical formula and a model for the torque, and a relation between rotational period and magnetic field, lead to a formula for the evolution of the mass loss rate; the present solar rate is near a minimum and was about five times larger when life on Earth started.


Author(s):  
Jie Yu ◽  
Saskia Hekker ◽  
Timothy R Bedding ◽  
Dennis Stello ◽  
Daniel Huber ◽  
...  

Abstract Mass loss by red giants is an important process to understand the final stages of stellar evolution and the chemical enrichment of the interstellar medium. Mass-loss rates are thought to be controlled by pulsation-enhanced dust-driven outflows. Here we investigate the relationships between mass loss, pulsations, and radiation, using 3213 luminous Kepler red giants and 135000 ASAS–SN semiregulars and Miras. Mass-loss rates are traced by infrared colours using 2MASS and WISE and by observed-to-model WISE fluxes, and are also estimated using dust mass-loss rates from literature assuming a typical gas-to-dust mass ratio of 400. To specify the pulsations, we extract the period and height of the highest peak in the power spectrum of oscillation. Absolute magnitudes are obtained from the 2MASS Ks band and the Gaia DR2 parallaxes. Our results follow. (i) Substantial mass loss sets in at pulsation periods above ∼60 and ∼100 days, corresponding to Asymptotic-Giant-Branch stars at the base of the period-luminosity sequences C′ and C. (ii) The mass-loss rate starts to rapidly increase in semiregulars for which the luminosity is just above the red-giant-branch tip and gradually plateaus to a level similar to that of Miras. (iii) The mass-loss rates in Miras do not depend on luminosity, consistent with pulsation-enhanced dust-driven winds. (iv) The accumulated mass loss on the Red Giant Branch consistent with asteroseismic predictions reduces the masses of red-clump stars by 6.3%, less than the typical uncertainty on their asteroseismic masses. Thus mass loss is currently not a limitation of stellar age estimates for galactic archaeology studies.


1984 ◽  
Vol 108 ◽  
pp. 195-206
Author(s):  
Jeremy Mould

Recent observations in both the field and the clusters of the Magellanic Clouds suggest a higher mass loss rate during or at the end of the asymptotic giant branch phase than previously supposed. Recent theoretical investigations offer an explanation for the frequency of carbon stars in the Clouds, but a rich parameter space remains to be explored, before detailed agreement can be expected.


2019 ◽  
Vol 622 ◽  
pp. A123 ◽  
Author(s):  
J. M. da Silva Santos ◽  
J. Ramos-Medina ◽  
C. Sánchez Contreras ◽  
P. García-Lario

Context. This is the second paper of a series making use of Herschel/PACS spectroscopy of evolved stars in the THROES catalogue to study the inner warm regions of their circumstellar envelopes (CSEs). Aims. We analyse the CO emission spectra, including a large number of high-J CO lines (from J = 14–13 to J = 45–44, ν = 0), as a proxy for the warm molecular gas in the CSEs of a sample of bright carbon-rich stars spanning different evolutionary stages from the asymptotic giant branch to the young planetary nebulae phase. Methods. We used the rotational diagram (RD) technique to derive rotational temperatures (Trot) and masses (MH2) of the envelope layers where the CO transitions observed with PACS arise. Additionally, we obtained a first order estimate of the mass-loss rates and assessed the impact of the opacity correction for a range of envelope characteristic radii. We used multi-epoch spectra for the well-studied C-rich envelope IRC+10216 to investigate the impact of CO flux variability on the values of Trot and MH2. Results. The sensitivity of PACS allowed for the study of higher rotational numbers than before indicating the presence of a significant amount of warmer gas (∼200 − 900 K) that is not traceable with lower J CO observations at submillimetre/millimetre wavelengths. The masses are in the range MH2 ∼ 10−2 − 10−5 M⊙, anticorrelated with temperature. For some strong CO emitters we infer a double temperature (warm T¯rot ∼ 400 K and hot T¯rot ∼ 820 K) component. From the analysis of IRC+10216, we corroborate that the effect of line variability is perceptible on the Trot of the hot component only, and certainly insignificant on MH2 and, hence, the mass-loss rate. The agreement between our mass-loss rates and the literature across the sample is good. Therefore, the parameters derived from the RD are robust even when strong line flux variability occurs, and the major source of uncertainty in the estimate of the mass-loss rate is the size of the CO-emitting volume.


2020 ◽  
Vol 494 (4) ◽  
pp. 5230-5238
Author(s):  
Roni Anna Gofman ◽  
Naomi Gluck ◽  
Noam Soker

ABSTRACT We evolve stellar models with zero-age main-sequence (ZAMS) mass of MZAMS ≳ 18 M⊙ under the assumption that they experience an enhanced mass-loss rate when crossing the instability strip at high luminosities and conclude that most of them end as type Ibc supernovae (SNe Ibc) or dust-obscured SNe II. We explore what level of enhanced mass-loss rate during the instability strip would be necessary to explain the ‘red supergiant problem’. This problem refers to the dearth of observed core-collapse supernovae progenitors with MZAMS ≳ 18 M⊙. Namely, we examine what enhanced mass-loss rate could make it possible for all these stars actually to explode as core-collapse supernovae (CCSNe). We find that the mass-loss rate should increase by a factor of at least about 10. We reach this conclusion by analysing the hydrogen mass in the stellar envelope and the optical depth of the dusty wind at the explosion, and crudely estimate that under our assumptions only about a fifth of these stars explode as unobscured SNe II and SNe IIb. About 10–15 per cent end as obscured SNe II that are infrared-bright but visibly very faint, and the rest, about 65–70 per cent, end as SNe Ibc. However, the statistical uncertainties are still too significant to decide whether many stars with MZAMS ≳ 18 M⊙ do not explode as expected in the neutrino driven explosion mechanism, or whether all of them explode as CCSNe, as expected by the jittering jets explosion mechanism.


1981 ◽  
Vol 59 ◽  
pp. 345-346
Author(s):  
A. Harpaz ◽  
A. Kovetz

The evolution of a 1.2Mʘ star along the asymptotic branch with continuous mass loss is presented, showing that this mass loss leads to the formation of a PN with a typical central star in its center.A former investigation (Harpaz and Kovetz, 1980) has shown that mechanisms for PN creation based on sudden violent processes are not likely to work in the envelope of a red giant star. On the other hand, significant mass loss from red giants was observed as a general phenomenon.We have followed the evolution of a 1.2Mʘ star along the asymptotic branch, including in the evolutionary calculations a mass loss according to Reimers’ empirical formula. It was found that towards the end of this stage, the mass loss rate was about 2.7xl0-6Mʘ/y, which is consistent with the formation of a typical PN within 30,000 years. When the mass content of the hydrogen rich envelope dropped to 1.5x10-3Mʘ, the star began to contract rapidly, forming a typical central star of 0.6Mʘ


2020 ◽  
Vol 635 ◽  
pp. A173 ◽  
Author(s):  
J. Krtička ◽  
J. Kubát ◽  
I. Krtičková

Context. Fast line-driven stellar winds play an important role in the evolution of planetary nebulae, even though they are relatively weak. Aims. We provide global (unified) hot star wind models of central stars of planetary nebulae. The models predict wind structure including the mass-loss rates, terminal velocities, and emergent fluxes from basic stellar parameters. Methods. We applied our wind code for parameters corresponding to evolutionary stages between the asymptotic giant branch and white dwarf phases for a star with a final mass of 0.569 M⊙. We study the influence of metallicity and wind inhomogeneities (clumping) on the wind properties. Results. Line-driven winds appear very early after the star leaves the asymptotic giant branch (at the latest for Teff ≈ 10 kK) and fade away at the white dwarf cooling track (below Teff = 105 kK). Their mass-loss rate mostly scales with the stellar luminosity and, consequently, the mass-loss rate only varies slightly during the transition from the red to the blue part of the Hertzsprung–Russell diagram. There are the following two exceptions to the monotonic behavior: a bistability jump at around 20 kK, where the mass-loss rate decreases by a factor of a few (during evolution) due to a change in iron ionization, and an additional maximum at about Teff = 40−50 kK. On the other hand, the terminal velocity increases from about a few hundreds of km s−1 to a few thousands of km s−1 during the transition as a result of stellar radius decrease. The wind terminal velocity also significantly increases at the bistability jump. Derived wind parameters reasonably agree with observations. The effect of clumping is stronger at the hot side of the bistability jump than at the cool side. Conclusions. Derived fits to wind parameters can be used in evolutionary models and in studies of planetary nebula formation. A predicted bistability jump in mass-loss rates can cause the appearance of an additional shell of planetary nebula.


Sign in / Sign up

Export Citation Format

Share Document