Helioseismic Search for Magnetic Field in the Solar Interior

2000 ◽  
Vol 179 ◽  
pp. 343-347
Author(s):  
H. M. Antia ◽  
S. M. Chitre ◽  
M. J. Thompson

AbstractThe observed splittings of solar oscillation frequencies can be utilized to study possible large-scale magnetic fields present in the solar interior. Using the GONG data on frequency splittings an attempt is made to infer the strength of magnetic fields inside the Sun.


1971 ◽  
Vol 43 ◽  
pp. 609-615 ◽  
Author(s):  
G. Daigne ◽  
M. F. Lantos-Jarry ◽  
M. Pick

It is possible to deduce information concerning large scale coronal magnetic field patterns from the knowledge of the location of radioburst sources.As the method concerns active centers responsible for corpuscular emission, the knowledge of these structures may have important implications in the understanding of corpuscular propagation in the corona and in the interplanetary medium.



1976 ◽  
Vol 71 ◽  
pp. 113-118
Author(s):  
P. Ambrož

The measurement of the magnitude of the limb effect was homogenized in time and a recurrent period of maxima of 27.8 days was found. A relation was found between the maximum values of the limb effect of the redshift, the boundaries of polarities of the interplanetary magnetic field, the characteristic large-scale distribution of the background magnetic fields and the complex of solar activity.



2015 ◽  
Vol 11 (A29A) ◽  
pp. 360-364
Author(s):  
Rim Fares

AbstractIn Sun-like stars, magnetic fields are generated in the outer convective layers. They shape the stellar environment, from the photosphere to planetary orbits. Studying the large-scale magnetic field of those stars enlightens our understanding of the field properties and gives us observational constraints for field generation dynamo models. It also sheds light on how “normal” the Sun is among Sun-like stars. In this contribution, I will review the field properties of Sun-like stars, focusing on solar twins and planet hosting stars. I will discuss the observed large-scale magnetic cycles, compare them to stellar activity cycles, and link that to what we know about the Sun. I will also discuss the effect of large-scale stellar fields on exoplanets, exoplanetary emissions (e.g. radio), and habitability.



Author(s):  
Robert Cameron

The solar dynamo is the action of flows inside the Sun to maintain its magnetic field against Ohmic decay. On small scales the magnetic field is seen at the solar surface as a ubiquitous “salt-and-pepper” disorganized field that may be generated directly by the turbulent convection. On large scales, the magnetic field is remarkably organized, with an 11-year activity cycle. During each cycle the field emerging in each hemisphere has a specific East–West alignment (known as Hale’s law) that alternates from cycle to cycle, and a statistical tendency for a North-South alignment (Joy’s law). The polar fields reverse sign during the period of maximum activity of each cycle. The relevant flows for the large-scale dynamo are those of convection, the bulk rotation of the Sun, and motions driven by magnetic fields, as well as flows produced by the interaction of these. Particularly important are the Sun’s large-scale differential rotation (for example, the equator rotates faster than the poles), and small-scale helical motions resulting from the Coriolis force acting on convective motions or on the motions associated with buoyantly rising magnetic flux. These two types of motions result in a magnetic cycle. In one phase of the cycle, differential rotation winds up a poloidal magnetic field to produce a toroidal field. Subsequently, helical motions are thought to bend the toroidal field to create new poloidal magnetic flux that reverses and replaces the poloidal field that was present at the start of the cycle. It is now clear that both small- and large-scale dynamo action are in principle possible, and the challenge is to understand which combination of flows and driving mechanisms are responsible for the time-dependent magnetic fields seen on the Sun.



Author(s):  
Philip Judge

‘Spots and magnetic fields’ explores sunspot behaviour. We have known since 1908 that sunspots are magnetic, but why does the Sun form them at all? Is the Sun extraordinary in this, or is its behaviour in line with other stars? The Sun’s magnetic field is generated by a solar dynamo, which can be partly explained by magnetohydrodynamics (MHD)—the study of the magnetic properties and behaviour of electrically conducting fluids—however, there is no full consensus on the solar dynamo. In the 1960s the new science of helioseismology gave us insights into the Sun’s interior rotation, but we are unable to make truly critical observations in the solar interior.



2000 ◽  
Vol 179 ◽  
pp. 209-212
Author(s):  
M. L. Demidov

AbstractA comparison is made of observational data on the mean magnetic field of the Sun from several observatories (a selection of published information and new measurements). Results of correlation and regression analyses of observations of background magnetic fields at the STOP telescope of the Sayan solar observatory in different spectral lines are also presented. Results obtained furnish an opportunity to obtain more unbiased information about large-scale magnetic fields of the Sun and, in particular, about manifestations of strong (kilogauss) magnetic fields in them.



1990 ◽  
Vol 138 ◽  
pp. 281-295
Author(s):  
V. I. Makarov ◽  
K. R. Sivaraman

The main features concerning the evolution of the large scale photospheric magnetic fields derived from synoptic maps as well as from H-alpha synoptic charts are reviewed. The significance of a variety of observations that indicate the presence of a high latitude component as a counterpart to the sunspot phenomenon at lower latitudes is reviewed. It is argued that these two components describe the global magnetic field on the sun. It is demonstrated that this scenario is able to link many phenomena observed on the sun (coronal emission, ephemeral active regions, geomagnetic activity, torsional oscillations, polar faculae and global modes in the magnetic field pattern) with the global magnetic activity.



2010 ◽  
Vol 6 (S273) ◽  
pp. 56-60 ◽  
Author(s):  
Mikhail Demidov

AbstractThe best way to test the stellar magnetic field mapping codes is to apply them, with some changes, to the Sun, where high-precision disk-integrated and disk-resolved observations are available for a long time. Data sets of the full-disk magnetograms and the solar mean magnetic fields (SMMF) measurements are provided, for example, by the J.M.Wilcox Solar observatory (WSO) and by the Sayan Solar observatory (SSO). In the second case the measurements in the Stokes-meter mode simultaneously in many spectral lines are available. This study is devoted to analysis of the SSO quasi-simultaneous full-disk magnetograms and SMMF measurements. Changes of the SMMF signal with rotation of the surface large-scale magnetic fields are demonstrated. Besides, by deleting of selected pixels with active regions (AR) from the maps their contribution to the integrated SMMF signal is evaluated. It is shown that in some cases the role of AR can be rather significant.



1991 ◽  
Vol 130 ◽  
pp. 190-192
Author(s):  
V.N. Krivodubskij ◽  
L.L. Kichatinov

AbstractThe influence of rotation on the transfer of the mean magnetic field of the Sun, caused by the radial inhomogeneity of the solar turbulent plasma density, is investigated. It turns out that the transfer directions of the poloidal and toroidal magnetic fields do not coincide.



2011 ◽  
Vol 7 (S286) ◽  
pp. 113-122
Author(s):  
Andrey G. Tlatov ◽  
Vladimir N. Obridko

AbstractThe topology of the large-scale magnetic field of the Sun and its role in the development of magnetic activity were investigated using Hα charts of the Sun in the period 1887-2011. We have considered the indices characterizing the minimum activity epoch, according to the data of large-scale magnetic fields. Such indices include: dipole-octopole index, area and average latitude of the field with dominant polarity in each hemisphere and others. We studied the correlation between these indices and the amplitude of the following sunspot cycle, and the relation between the duration of the cycle of large-scale magnetic fields and the duration of the sunspot cycle.The comparative analysis of the solar corona during the minimum epochs in activity cycles 12 to 24 shows that the large-scale magnetic field has been slow and steadily changing during the past 130 years. The reasons for the variations in the solar coronal structure and its relation with long-term variations in the geomagnetic indices, solar wind and Gleissberg cycle are discussed.We also discuss the origin of the large-scale magnetic field. Perhaps the large-scale field leads to the generation of small-scale bipolar ephemeral regions, which in turn support the large-scale field. The existence of two dynamos: a dynamo of sunspots and a surface dynamo can explain phenomena such as long periods of sunspot minima, permanent dynamo in stars and the geomagnetic field.



Sign in / Sign up

Export Citation Format

Share Document