scholarly journals Structure of Radiatively Cooled Jets

1990 ◽  
Vol 123 ◽  
pp. 551-554
Author(s):  
Masa-Aki Kondo

AbstractRadiative cooling strongly affects the thermal structure of dense jet, such as in SS433, through free-free emission. From the dynamical aspect, the beam width of a cooled jet does not expand, unlike from an adiabatic jet. From the thermal aspect, cooling efficiency determines the ratio of X-ray region of high temperature to optical one of low temperature. However, this ratio is influenced by the heating due to contained high-energy particles, which produce synchrotron radiation in the tail of the jet.Extragalactic jets can also be considered in a similar way due to other energy loss mechanisms.

Galaxies ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 36
Author(s):  
Yoshiyuki Inoue ◽  
Dmitry Khangulyan ◽  
Akihiro Doi

To explain the X-ray spectra of active galactic nuclei (AGN), non-thermal activity in AGN coronae such as pair cascade models has been extensively discussed in the past literature. Although X-ray and gamma-ray observations in the 1990s disfavored such pair cascade models, recent millimeter-wave observations of nearby Seyferts have established the existence of weak non-thermal coronal activity. In addition, the IceCube collaboration reported NGC 1068, a nearby Seyfert, as the hottest spot in their 10 yr survey. These pieces of evidence are enough to investigate the non-thermal perspective of AGN coronae in depth again. This article summarizes our current observational understanding of AGN coronae and describes how AGN coronae generate high-energy particles. We also provide ways to test the AGN corona model with radio, X-ray, MeV gamma ray, and high-energy neutrino observations.


2020 ◽  
Vol 21 (1) ◽  
pp. 35
Author(s):  
Marzuki Silalahi ◽  
Bernadus Bandriyana ◽  
Arbi Dimyati ◽  
Bambang Sugeng ◽  
Syahfandi Ahda ◽  
...  

Microstructure and phase distribution of innovative Oxide Dispersion Strengthened (ODS) steel based on Fe-Cr-ZrO2 particularly for application at high temperature reactor with variation of Cr content was analysed. The alloy was synthesized with Cr composition variation of  15, 20 and 25 wt.% Cr, while zirconia dispersoid kept constant at 0.50 wt.%. The samples was synthesized by mechanical alloying comprising of high energy milling for 3 hours followed by vibrated compression with iso-static load at 20 ton. The final consolidation was performed via sintering process for 4 minutes using the Arc Plasma Sintering (APS) technique, a new method developed in BATAN especially for synthesizing high temperature materials. The samples were then characterized by means of scanning electron microscopy (SEM) with energy dispersed X-ray (EDX) analysis capability and X-ray diffraction. The mechanical property of hardness was measured using standard Vickers micro hardness tester to confirmed the microstructure analysis.  The results show that the microstructure of the ODS alloy samples in all variation of Cr content consists generally of cubic Fe-Cr matrix phase with small of porosity and  Zirconia particles distributed homogenously in and around the matrix grains. The achievable hardness was between 142 and 184 HVN dependent consistently on Cr content in which Cr element may cause grain refining that in turn increase the hardness.


1990 ◽  
Vol 115 ◽  
pp. 232-239
Author(s):  
Wallace Tucker

AbstractArguments against the existence of large scale cooling flows in clusters of galaxies are presented. The evidence for cooling flows is all circumstantial, consisting of observations of cool gas or hot gas with a radiative cooling time less than the Hubble time, or a central peak in the x-ray surface brightness profile. There is no evidence for large quantities (several tens to several hundreds of solar masses per year) of matter actually flowing anywhere. On the contrary, several lines of evidence — stellar dynamics, observations of the amount of star formation, x-ray surface brightness observations, theoretical calculations of the growth of thermal instabilities, the amount of cold gas — suggest that cooling flows, if they exist, must be suppressed by one to two orders of magnitude from the values implied by simple estimates based on the radiative cooling time of the x-ray emitting gas. Two heat sources which might accomplish this — thermal conduction and relativistic particles, are considered and an alternative to the standard model for cooling flows is presented: an accretion flow with feedback wherein the accretion of gas into a massive black hole in the central galaxy generates high energy particles that heat the gas and act to limit the accretion.


2007 ◽  
Vol 40 (6) ◽  
pp. 999-1007 ◽  
Author(s):  
Ángeles G. De la Torre ◽  
Khadija Morsli ◽  
Mohammed Zahir ◽  
Miguel A.G. Aranda

The clinkerization processes to form belite clinkers, with theoretical compositions close to 60 wt% of Ca2SiO4, have been studiedin situby high-resolution high-energy (λ = 0.30 Å) synchrotron X-ray powder diffraction. In order to obtain active belite cements, different amounts of K2O, Na2O and SO3have been added. The existence range of the high-temperature phases has been established and, furthermore, Rietveld quantitative phase analyses at high temperature have been performed for all patterns. The following high-temperature reactions have been investigated: (i) polymorphic transformations of dicalcium silicate, \alpha_{\rm L}'-Ca2SiO4↔ \alpha_{\rm H}'-Ca2SiO4from 1170 to 1230 K, and \alpha_{\rm H}'-Ca2SiO4↔ α-Ca2SiO4from 1500 to 1600 K; (ii) melting of the aluminates phases, Ca3Al2O6and Ca4(Al2Fe2)O10, above ∼1570 K; and (iii) reaction of Ca2SiO4with CaO to yield Ca3SiO5above ∼1550 K. Moreover, in all the studied compositions the temperature of the polymorphic transformation \alpha_{\rm H}'-Ca2SiO4↔ α-Ca2SiO4has decreased with the addition of activators. Finally, active belite clinkers were produced as the final samples contained α-belite phases.


2006 ◽  
Vol 527-529 ◽  
pp. 1473-1476 ◽  
Author(s):  
Evgenia V. Kalinina ◽  
Anatoly M. Strel'chuk ◽  
Alexander A. Lebedev ◽  
Nikita B. Strokan ◽  
Alexander M. Ivanov ◽  
...  

The effect of irradiation with protons, electrons, neutrons, x-ray radiation and gamma-ray photons as well as with different ions on properties of starting SiC material and devices based on it was studied. The rectifying properties of the diode structures, which degraded as a result of irradiation with high energy particles, were recovered at higher operation temperatures. The transistor structure SiC-based detectors were realized with the signal amplification by a factor of tens under irradiation. The energy resolution of 0.34 %, commensurable with Si-detectors, has been achieved for SiC detectors and is correct for all classes of short range ions. The maximum signal amplitude corresponds, in SiC, to a mean electron-hole pair creation energy of 7.7 eV.


2020 ◽  
Vol 644 ◽  
pp. L4
Author(s):  
P. Bordas ◽  
X. Zhang

Pulsar wind nebulae (PWNe) produced from supersonic runaway pulsars can render extended X-ray structures in the form of tails and prominent jets. In this Letter, we report on the analysis of ∼130 ks observations of the PWN around PSR J1135–6055 that were obtained with the Chandra satellite. The system displays bipolar jet-like structures of uncertain origin, a compact nebula around the pulsar likely formed by the bow shock ahead of it, and a trailing tail produced by the pulsar fast proper motion. The spectral and morphological properties of these structures reveal strong similarities with the PWNe in other runaway pulsars, such as PSR J1509–5850 and Geminga. We discuss their physical origin considering both canonical PWN and jet formation models as well as alternative scenarios that can also yield extended jet-like features following the escape of high-energy particles into the ambient magnetic field.


Sign in / Sign up

Export Citation Format

Share Document