scholarly journals Antarctic moisture flux and net accumulation from global atmospheric analyses

1995 ◽  
Vol 21 ◽  
pp. 149-156 ◽  
Author(s):  
W.F. Budd ◽  
P. A. Reid ◽  
L.J. Minty

Previous attempts to derive the Antarctic surface net accumulation distribution from atmospheric-moisture fluxes, in reasonable agreement with the observed distribution, have encountered many difficulties. The present analysis uses the Australian Bureau of Meteorology Global Atmospheric Assimilation and Prediction Scheme (GASP), which has been operational since 1989, to derive the net air-mass and moisture fluxes over the Antarctic. It is shown that the annual mean net surface accumulation closely resembles the glaciologically observed distribution and provides a physical basis for the observed pattern, through the moisture transports. The variations with latitude and elevation and through the annual cycle are also well reproduced. Although some mass-closure errors still exist, they are expected to become insignificant with the new generation of improved analysis schemes. Consequently the atmospheric analyses can provide a sound basis for both assessing the performance of global climate models in simulating Antarctic accumulation rates and monitoring long-term changes which may occur with global warming.

1995 ◽  
Vol 21 ◽  
pp. 149-156 ◽  
Author(s):  
W.F. Budd ◽  
P. A. Reid ◽  
L.J. Minty

Previous attempts to derive the Antarctic surface net accumulation distribution from atmospheric-moisture fluxes, in reasonable agreement with the observed distribution, have encountered many difficulties. The present analysis uses the Australian Bureau of Meteorology Global Atmospheric Assimilation and Prediction Scheme (GASP), which has been operational since 1989, to derive the net air-mass and moisture fluxes over the Antarctic. It is shown that the annual mean net surface accumulation closely resembles the glaciologically observed distribution and provides a physical basis for the observed pattern, through the moisture transports. The variations with latitude and elevation and through the annual cycle are also well reproduced. Although some mass-closure errors still exist, they are expected to become insignificant with the new generation of improved analysis schemes. Consequently the atmospheric analyses can provide a sound basis for both assessing the performance of global climate models in simulating Antarctic accumulation rates and monitoring long-term changes which may occur with global warming.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Mateusz Taszarek ◽  
John T. Allen ◽  
Mattia Marchio ◽  
Harold E. Brooks

AbstractGlobally, thunderstorms are responsible for a significant fraction of rainfall, and in the mid-latitudes often produce extreme weather, including large hail, tornadoes and damaging winds. Despite this importance, how the global frequency of thunderstorms and their accompanying hazards has changed over the past 4 decades remains unclear. Large-scale diagnostics applied to global climate models have suggested that the frequency of thunderstorms and their intensity is likely to increase in the future. Here, we show that according to ERA5 convective available potential energy (CAPE) and convective precipitation (CP) have decreased over the tropics and subtropics with simultaneous increases in 0–6 km wind shear (BS06). Conversely, rawinsonde observations paint a different picture across the mid-latitudes with increasing CAPE and significant decreases to BS06. Differing trends and disagreement between ERA5 and rawinsondes observed over some regions suggest that results should be interpreted with caution, especially for CAPE and CP across tropics where uncertainty is the highest and reliable long-term rawinsonde observations are missing.


2014 ◽  
Vol 7 (7) ◽  
pp. 2061-2072 ◽  
Author(s):  
T. Kanitz ◽  
A. Ansmann ◽  
A. Foth ◽  
P. Seifert ◽  
U. Wandinger ◽  
...  

Abstract. In the CALIPSO data analysis, surface type (land/ocean) is used to augment the aerosol characterization. However, this surface-dependent aerosol typing prohibits a correct classification of marine aerosol over land that is advected from ocean to land. This might result in a systematic overestimation of the particle extinction coefficient and of the aerosol optical thickness (AOT) of up to a factor of 3.5 over land in coastal areas. We present a long-term comparison of CALIPSO and ground-based lidar observations of the aerosol conditions in the coastal environment of southern South America (Punta Arenas, Chile, 53° S), performed in December 2009–April 2010. Punta Arenas is almost entirely influenced by marine particles throughout the year, indicated by a rather low AOT of 0.02–0.04. However, we found an unexpectedly high fraction of continental aerosol in the aerosol types inferred by means of CALIOP observations and, correspondingly, too high values of particle extinction. Similar features of the CALIOP data analysis are presented for four other coastal areas around the world. Since CALIOP data serve as important input for global climate models, the influence of this systematic error was estimated by means of simplified radiative-transfer calculations.


Geosciences ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 255 ◽  
Author(s):  
Thomas J. Bracegirdle ◽  
Florence Colleoni ◽  
Nerilie J. Abram ◽  
Nancy A. N. Bertler ◽  
Daniel A. Dixon ◽  
...  

Quantitative estimates of future Antarctic climate change are derived from numerical global climate models. Evaluation of the reliability of climate model projections involves many lines of evidence on past performance combined with knowledge of the processes that need to be represented. Routine model evaluation is mainly based on the modern observational period, which started with the establishment of a network of Antarctic weather stations in 1957/58. This period is too short to evaluate many fundamental aspects of the Antarctic and Southern Ocean climate system, such as decadal-to-century time-scale climate variability and trends. To help address this gap, we present a new evaluation of potential ways in which long-term observational and paleo-proxy reconstructions may be used, with a particular focus on improving projections. A wide range of data sources and time periods is included, ranging from ship observations of the early 20th century to ice core records spanning hundreds to hundreds of thousands of years to sediment records dating back 34 million years. We conclude that paleo-proxy records and long-term observational datasets are an underused resource in terms of strategies for improving Antarctic climate projections for the 21st century and beyond. We identify priorities and suggest next steps to addressing this.


1995 ◽  
Vol 21 ◽  
pp. 144-148
Author(s):  
Garth W. Paltridge ◽  
Christopher M. Zweck

A simple steady-state energy and mass-balance model of the Antarctic ice sheet is developed. Basically it is a set of two equations with two unknowns of steady-state height h and potential basal temperature Tb. Tb determines whether, and to what extent, there is liquid water at the base of the ice which in turn affects the values of h and Tb. Simultaneous changes of sea-level temperature and precipitation (changes related to each other as might be expected from global climate models) indicate a maximum in the field of possible steady-state ice volumes which may not be far from the presently observed conditions. The possibility of cyclical variation in ground heat flux associated with convection of water and heat in the continental crust is discussed. The mechanism might be capable of generating cycles of ice-sheet volume with relatively short periods similar to those of Milankovitch forcing.


1998 ◽  
Vol 27 ◽  
pp. 565-570 ◽  
Author(s):  
William M. Connolley ◽  
Siobhan P. O'Farrell

We compare observed temperature variations in Antarctica with climate-model runs over the last century. The models used are three coupled global climate models (GCMs) — the UKMO, the CSIRO and the MPI forced by the CO2 increases observed over the last century, and an atmospheric model experiment forced with observed sea-surface temperatures and sea-ice extents over the last century. Despite some regions of agreement, in general the GCM runs appear to be incompatible with each other and with the observations, although the short observational record and high natural variability make verification difficult. One of the best places for a more detailed study is the Antarctic Peninsula where the density of stations is higher and station records are longer than elsewhere in Antarctica. Observations show that this area has seen larger temperature rises than anywhere else in Antarctica. None of the three GCMs simulate such large temperature changes in the Peninsula region, in either climate-change runs radiatively forced by CO2 increases or control runs which assess the level of model variability.


2018 ◽  
Author(s):  
Martha M. Vogel ◽  
Jakob Zscheischler ◽  
Sonia I. Seneviratne

Abstract. The frequency and intensity of climate extremes is expected to increase in many regions due to anthropogenic climate change. In Central Europe extreme temperatures are projected to change more strongly than global mean temperatures and soil moisture-temperature feedbacks significantly contribute to this regional amplification. Because of their strong societal, ecological and economic impacts, robust projections of temperature extremes are needed. Unfortunately, in current model projections, temperature extremes in Central Europe are prone to large uncertainties. In order to understand and potentially reduce uncertainties of extreme temperatures projections in Europe, we analyze global climate models from the CMIP5 ensemble for the business-as-usual high-emission scenario (RCP8.5). We find a divergent behavior in long-term projections of summer precipitation until the end of the 21st century, resulting in a trimodal distribution of precipitation (wet, dry and very dry). All model groups show distinct characteristics for summer latent heat flux, top soil moisture, and temperatures on the hottest day of the year (TXx), whereas for net radiation and large-scale circulation no clear trimodal behavior is detectable. This suggests that different land-atmosphere coupling strengths may be able to explain the uncertainties in temperature extremes. Constraining the full model ensemble with observed present-day correlations between summer precipitation and TXx excludes most of the very dry and dry models. In particular, the very dry models tend to overestimate the negative coupling between precipitation and TXx, resulting in a too strong warming. This is particularly relevant for global warming levels above 2 °C. The analysis allows for the first time to substantially reduce uncertainties in the projected changes of TXx in global climate models. Our results suggest that long-term temperature changes in TXx in Central Europe are about 20 % lower than projected by the multi-model median of the full ensemble. In addition, mean summer precipitation is found to be more likely to stay close to present-day levels. These results are highly relevant for improving estimates of regional climate-change impacts including heat stress, water supply and crop failure for Central Europe.


2020 ◽  
Author(s):  
Sarah Feron ◽  
Raul Cordero

<p>Surface Melt (SM) is one of the factors that contribute to sea level rise; surface meltwater draining through the ice and beneath Antarctic glaciers may cause acceleration in their flow towards the sea. Changes in the frequency of relatively warm days (including heatwaves) can substantially alter the SM variability, thus leading to extreme melting events. By using simulations from 13 Global Climate Models (GCMs) and according to a moderate representative concentration pathways (RCP4.5), here we show that the frequency of extreme SM events (SM90; according to the 90th percentile over the reference period 1961-1990) may significantly increase in coastal areas of West Antarctica; in particular in the Antarctic Peninsula. By the end of the century SM90 estimates are expected to increase from currently 0.10 kg/m2/day to about 0.45 kg/m2/day in the Antarctic Peninsula. Increments in SM90 estimates are not just driven by changes in the average SM, but also by the variability in SM. The latter is expected to increase by around 50% in the Antarctic Peninsula.</p>


2020 ◽  
Author(s):  
Baijun Tian

<p>The double-Intertropical Convergence Zone (ITCZ) bias is one of the most outstanding problems in climate models. This study seeks to examine the double-ITCZ bias in the latest state-of-the-art fully coupled global climate models that participated in Coupled Model Intercomparison Project (CMIP) Phase 6 (CMIP6) in comparison to their previous generations (CMIP3 and CMIP5 models). To that end, we have analyzed the long-term annual mean tropical precipitation distributions and several precipitation bias indices that quantify the double-ITCZ biases in 75 climate models including 24 CMIP3 models, 25 CMIP3 models, and 26 CMIP6 models. We find that the double-ITCZ bias and its big inter-model spread persist in CMIP6 models but the double-ITCZ bias is slightly reduced from CMIP3 or CMIP5 models to CMIP6 models.</p>


Sign in / Sign up

Export Citation Format

Share Document