scholarly journals On the process of Mach wave generation in air

1991 ◽  
Vol 9 (2) ◽  
pp. 453-464 ◽  
Author(s):  
M. De Rosa ◽  
F. Famá ◽  
V. Palleschi ◽  
A. Salvetti ◽  
D. P. Singh ◽  
...  

The process of Mach wave generation in air is studied in both plane and spherical geometries. The experimental results reported here are theoretically interpreted using the predictions of a self-similar model of strong explosion along with the hydrodynamic equations of a perfect gas, and a good agreement is found.

Author(s):  
Vitaliy Stelmashuk ◽  
Jiri Schmidt

Abstract We present a study that was undertaken to calculate the resistance of low current corona discharge in saline water. A novel empirical model was obtained, based on several assumptions, which allowed us to determine the corona resistance using the measured current. This resistance could be then exploited to compute the power deposited to the corona as a function of time. The wall motion of a bubble freely oscillating in saline water was calculated using hydrodynamic equations and the calculated power function. A comparison of numerical simulations with experimental results showed that good agreement was achieved.


1997 ◽  
Vol 163 ◽  
pp. 732-733
Author(s):  
C.R. Kaiser ◽  
P. Alexander

AbstractWe present a model for the large scale structure of FRIItype extragalactic radio sources. The sources are shown to grow selfsimilar and the dependence of the length of the source and the pressure inside the cocoon on the life time are calculated. The stability of the jets in such sources is investigated and the jet power at which FRII sources turn into FRIs is found to be in good agreement with observations.


2019 ◽  
Vol 22 (2) ◽  
pp. 88-93
Author(s):  
Hamed Khanger Mina ◽  
Waleed K. Al-Ashtrai

This paper studies the effect of contact areas on the transient response of mechanical structures. Precisely, it investigates replacing the ordinary beam of a structure by two beams of half the thickness, which are joined by bolts. The response of these beams is controlled by adjusting the tightening of the connecting bolts and hence changing the magnitude of the induced frictional force between the two beams which affect the beams damping capacity. A cantilever of two beams joined together by bolts has been investigated numerically and experimentally. The numerical analysis was performed using ANSYS-Workbench version 17.2. A good agreement between the numerical and experimental results has been obtained. In general, results showed that the two beams vibrate independently when the bolts were loosed and the structure stiffness is about 20 N/m and the damping ratio is about 0.008. With increasing the bolts tightening, the stiffness and the damping ratio of the structure were also increased till they reach their maximum values when the tightening force equals to 8330 N, where the structure now has stiffness equals to 88 N/m and the damping ratio is about 0.062. Beyond this force value, increasing the bolts tightening has no effect on stiffness of the structure while the damping ratio is decreased until it returned to 0.008 when the bolts tightening becomes immense and the beams behave as one beam of double thickness.


1996 ◽  
Vol 05 (04) ◽  
pp. 653-670 ◽  
Author(s):  
CÉLINE FIORINI ◽  
JEAN-MICHEL NUNZI ◽  
FABRICE CHARRA ◽  
IFOR D.W. SAMUEL ◽  
JOSEPH ZYSS

An original poling method using purely optical means and based on a dual-frequency interference process is presented. We show that the coherent superposition of two beams at fundamental and second-harmonic frequencies results in a polar field with an irreducible rotational spectrum containing both a vector and an octupolar component. This enables the method to be applied even to molecules without a permanent dipole such as octupolar molecules. After a theoretical analysis of the process, we describe different experiments aiming at light-induced noncentrosymmetry performed respectively on one-dimensional Disperse Red 1 and octupolar Ethyl Violet molecules. Macroscopic octupolar patterning of the induced order is demonstrated in both transient and permanent regimes. Experimental results show good agreement with theory.


2021 ◽  
Vol 5 (3) ◽  
pp. 32
Author(s):  
Benedikt Mutsch ◽  
Peter Walzel ◽  
Christian J. Kähler

The droplet deformation in dispersing units of high-pressure homogenizers (HPH) is examined experimentally and numerically. Due to the small size of common homogenizer nozzles, the visual analysis of the transient droplet generation is usually not possible. Therefore, a scaled setup was used. The droplet deformation was determined quantitatively by using a shadow imaging technique. It is shown that the influence of transient stresses on the droplets caused by laminar extensional flow upstream the orifice is highly relevant for the droplet breakup behind the nozzle. Classical approaches based on an equilibrium assumption on the other side are not adequate to explain the observed droplet distributions. Based on the experimental results, a relationship from the literature with numerical simulations adopting different models are used to determine the transient droplet deformation during transition through orifices. It is shown that numerical and experimental results are in fairly good agreement at limited settings. It can be concluded that a scaled apparatus is well suited to estimate the transient droplet formation up to the outlet of the orifice.


2002 ◽  
Vol 20 (2) ◽  
pp. 263-268 ◽  
Author(s):  
X. FLEURY ◽  
S. BOUQUET ◽  
C. STEHLÉ ◽  
M. KOENIG ◽  
D. BATANI ◽  
...  

In this article, we present a laboratory astrophysics experiment on radiative shocks and its interpretation using simple modelization. The experiment is performed with a 100-J laser (pulse duration of about 0.5 ns) which irradiates a 1-mm3 xenon gas-filled cell. Descriptions of both the experiment and the associated diagnostics are given. The apparition of a radiation precursor in the unshocked material is evidenced from interferometry diagrams. A model including self-similar solutions and numerical ones is derived and fairly good agreements are obtained between the theoretical and the experimental results.


2012 ◽  
Vol 134 (10) ◽  
Author(s):  
Dan Igra ◽  
Ozer Igra ◽  
Lazhar Houas ◽  
Georges Jourdan

Simulations of experimental results appearing in Jourdan et al. (2007, “Drag Coefficient of a Sphere in a Non-Stationary Flow: New Results,”Proc. R. Soc. London, Ser. A, 463, pp. 3323–3345) regarding acceleration of a sphere by the postshock flow were conducted in order to find the contribution of the various parameters affecting the sphere drag force. Based on the good agreement found between present simulations and experimental findings, it is concluded that the proposed simulation scheme could safely be used for evaluating the sphere’s motion in the postshock flow.


2007 ◽  
Vol 353-358 ◽  
pp. 1229-1232
Author(s):  
Z.N. Yin ◽  
L.F. Fan ◽  
Tie Jun Wang

Dynamic Mechanical Analysis (DMA) and static relaxation tests are carried out to study the viscoelastic deformation of PC/ABS alloy with blending ratio of PC to ABS being 50/50. A modified approach is developed to calculate the relaxation modulus of PC/ABS alloy from the DMA experimental results of storage and loss moduli. Comparison of the results obtained from DMA and static relaxation tests is presented and good agreement is found.


Sign in / Sign up

Export Citation Format

Share Document