scholarly journals Absorption of ultrashort laser pulses in solid targets

1991 ◽  
Vol 9 (2) ◽  
pp. 465-475 ◽  
Author(s):  
F. Cornolti ◽  
P. Mulser ◽  
M. Hahn

Femtosecond laser pulses are capable of producing very high light intensities at moderate pulse energies. We study the laser light absorption at flux densities of 1017 W/cm2 and higher during the plasma formation and the plasma heating process. In the first stage multiphoton and collisional ionization dominate. Modification of the inverse bremsstrahlung absorption occur owing to ionization dephasing. In the second stage beam energy conversion is mainly by collisional absorption at normal incidence, and by resonance absorption at oblique illumination. Simultaneously strong electron heat conduction provides for plasma formation and heating in deeper layers of the solid not accessible to the laser light. The penetration depth of the laser beam is modified by the anomalous skin effect. The electron-ion collision frequency at the high laser intensities under consideration is determined by the oscillation energy of the electrons rather than by their thermal motion. Although it reaches high values (1014-1016 S-1), all kinds of solid targets become strongly reflecting (>60%) owing to the formation of electron densities largely exceeding those of solid-state plasmas. Effects modifying the degree of absorption are briefly discussed.

Author(s):  
V. Pouget ◽  
E. Faraud ◽  
K. Shao ◽  
S. Jonathas ◽  
D. Horain ◽  
...  

Abstract This paper presents the use of pulsed laser stimulation with picosecond and femtosecond laser pulses. We first discuss the resolution improvement that can be expected when using ultrashort laser pulses. Two case studies are then presented to illustrate the possibilities of the pulsed laser photoelectric stimulation in picosecond single-photon and femtosecond two-photon modes.


2008 ◽  
Vol 92 (4) ◽  
pp. 803-808 ◽  
Author(s):  
D. Puerto ◽  
W. Gawelda ◽  
J. Siegel ◽  
J. Bonse ◽  
G. Bachelier ◽  
...  

2018 ◽  
Vol 27 (04) ◽  
pp. 1850044
Author(s):  
QingWei Zeng ◽  
Lei Liu ◽  
TaiChang Gao ◽  
Ming Chen ◽  
Qi Wang ◽  
...  

The crucial role of nonlinear propagation effects in the self-guiding of femtosecond laser pulses required accurate representation of nonlinearities to describe them. In this paper, an improved theoretical model has been proposed to study the height distribution of the atmospheric nonlinear refractive index. The results show that the revised model obviously improves accurate estimation of nonlinear index at the long wavelength band. Based on the model, we also found the atmospheric nonlinear refractive index differs much from the lower atmosphere to the upper atmosphere. Our results are essential for engineering applications based on the long-distance ultrashort laser pulses’ transmission in diverse atmosphere.


2002 ◽  
Vol 20 (1) ◽  
pp. 51-57 ◽  
Author(s):  
T. MOCEK ◽  
C.M. KIM ◽  
H.J. SHIN ◽  
D.G. LEE ◽  
Y.H. CHA ◽  
...  

We report soft X-ray spectra (4–18 nm) produced by the interaction of 25–100-fs laser pulses at an intensity of up to 7 × 1016 W/cm2 with a cryogenically cooled Ar gas jet. New spectral lines from Ar8+, Ar9+, and Ar10+ charge states appeared with decreasing preexpansion gas temperature. A nonlinear increase of X-ray line emission from Ar7+, Ar8+, and Ar9+ was observed with cooling, which saturated below a certain temperature. The drastic change in the spectrum is attributed to efficient collisional heating and collisional ionization of growing, small- to medium-sized (102–103 atoms) Ar clusters from the cooled jet. When the laser pulse was extended from 25 to 100 fs we observed considerably stronger emission on lines from high charge states, such as Ar8+, Ar9+, and Ar10+, which suggests that the resonance absorption condition could be reached for the 100-fs pulse.


Nanophotonics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3153-3159 ◽  
Author(s):  
Pablo Díaz-Núñez ◽  
Sabrina L. J. Thomä ◽  
Guillermo González-Rubio ◽  
Olivia Borrell-Grueiro ◽  
Roland P. M. Höller ◽  
...  

Abstract We report on the irradiation of gold rod–sphere assemblies with ultrashort laser pulses, producing structures that are very difficult to obtain by other methods. The optical response of these assemblies displays several peaks arising from the interaction of the plasmon modes of the individual particles, offering thus great flexibility to control the energy deposited on the individual particles. Judicious selection of the wavelength and fluence of the laser pulses allow fine control over the changes produced: the particles can be melted, welded and/or the organic links cleaved. In this way, it is possible to generate structures “à la carte” with a degree of control unmatched by other synthetic protocols. The method is exemplified with gold nanoparticles, but it can be easily implemented on particles composed of different metals, widening considerably the range of possibilities. The final structures are excellent candidates for surface-enhanced spectroscopies or plasmonic photothermal therapy as they have a very intense electric field located outside the structure, not in the gaps.


2015 ◽  
Vol 1101 ◽  
pp. 169-172
Author(s):  
Brij Mohan Kumar Prasad ◽  
Amrit Bawankan

We report on a diode laser which is used to pump directly the crystal with a semiconductor saturable absorber allows passive mode locking for the generation of pulses with an average power along with the broadband light by focusing on ultrashort laser pulses into crystal tungstate. The nonuniformity can lead to the crystal and bonding failure. Also model the thermal and structural properties at the various tempeartures to observe the beam quality. Extends the generated spectrum from the infrared to ultraviolet through the visible region, it consists of discrete spatially separated sidebands.


2019 ◽  
Vol 34 (01n03) ◽  
pp. 2040016
Author(s):  
Caizhen Yao ◽  
Yuan Li ◽  
Shizhen Xu ◽  
Xinxiang Miao ◽  
Yayun Ye ◽  
...  

Structurally colored stainless steel (SS) surfaces were produced by using femtosecond laser at normal incidence at ambient conditions. The influence of laser polarization on the surface properties was investigated. The surface morphologies, roughness and color of the laser-treated surface were characterized by using environmental scanning electron microscope (ESEM), roughmeter and atomic force microscope (AFM). Results indicated that the circular polarization leads to more random structures than the horizontally linear polarization. Specimen with the highest surface roughness shows the brightest color. Different colors are cyclically exhibited by changing view angles due to different orders of diffraction. This investigation developed the technique of using femtosecond laser in situ preparation of periodic structures on 304 SS, and indicating that laser polarization is an important parameter to control surface structures to achieve different colors.


Nanophotonics ◽  
2017 ◽  
Vol 6 (5) ◽  
pp. 743-763 ◽  
Author(s):  
Martin Ams ◽  
Peter Dekker ◽  
Simon Gross ◽  
Michael J. Withford

AbstractOptical waveguide Bragg gratings (WBGs) can be created in transparent materials using femtosecond laser pulses. The technique is conducted without the need for lithography, ion-beam fabrication methods, or clean room facilities. This paper reviews the field of ultrafast laser-inscribed WBGs since its inception, with a particular focus on fabrication techniques, WBG characteristics, WBG types, and WBG applications.


Sign in / Sign up

Export Citation Format

Share Document