scholarly journals Energy loss dynamics of intense heavy ion beams interacting with solid targets

2002 ◽  
Vol 20 (3) ◽  
pp. 485-491 ◽  
Author(s):  
D. VARENTSOV ◽  
P. SPILLER ◽  
N.A. TAHIR ◽  
D.H.H. HOFFMANN ◽  
C. CONSTANTIN ◽  
...  

At the Gesellschaft für Schwerionenforschung (GSI, Darmstadt) intense beams of energetic heavy ions have been used to generate high-energy-density (HED) state in matter by impact on solid targets. Recently, we have developed a new method by which we use the same heavy ion beam that heats the target to provide information about the physical state of the interior of the target (Varentsov et al., 2001). This is accomplished by measuring the energy loss dynamics (ELD) of the beam emerging from the back surface of the target. For this purpose, a new time-resolving energy loss spectrometer (scintillating Bragg-peak (SBP) spectrometer) has been developed. In our experiments we have measured energy loss dynamics of intense beams of 238U, 86Kr, 40Ar, and 18O ions during the interaction with solid rare-gas targets, such as solid Ne and solid Xe. We observed continuous reduction in the energy loss during the interaction time due to rapid hydrodynamic response of the ion-beam-heated target matter. These are the first measurements of this kind. Two-dimensional hydrodynamic simulations were carried out using the beam and target parameters of the experiments. The conducted research has established that the ELD measurement technique is an excellent diagnostic method for HED matter. It specifically allows for direct and quantitative comparison with the results of hydrodynamic simulations, providing experimental data for verification of computer codes and underlying theoretical models. The ELD measurements will be used as a standard diagnostics in the future experiments on investigation of the HED matter induced by intense heavy ion beams, such as the HI-HEX (Heavy Ion Heating and EXpansion) EOS studies (Hoffmann et al., 2002).

2006 ◽  
Vol 24 (4) ◽  
pp. 541-551 ◽  
Author(s):  
F. BECKER ◽  
A. HUG ◽  
P. FORCK ◽  
M. KULISH ◽  
P. NI ◽  
...  

An intense and focused heavy ion beam is a suitable tool to generate high energy density in matter. To compare results with simulations it is essential to know beam parameters as intensity, longitudinal, and transversal profile at the focal plane. Since the beam's energy deposition will melt and evaporate even tungsten, non-intercepting diagnostics are required. Therefore a capacitive pickup with high resolution in both time and space was designed, built and tested at the high temperature experimental area at GSI. Additionally a beam induced fluorescence monitor was investigated for the synchrotron's (SIS-18) energy-regime (60–750 AMeV) and successfully tested in a beam-transfer-line.


2002 ◽  
Vol 20 (3) ◽  
pp. 399-403 ◽  
Author(s):  
E. DEWALD ◽  
C. CONSTANTIN ◽  
S. UDREA ◽  
J. JACOBY ◽  
D.H.H. HOFFMANN ◽  
...  

By the interaction of intense (1010 particles/500 ns) relativistic (∼300 MeV/amu) heavy ion beams with solid targets, large volumes (several cubic millimeters) of strongly coupled plasmas are produced at solid-state densities and temperatures of up to 1 eV, with relevance for equation-of-state (EOS) studies of matter at high energy density and heavy ion-beam-driven inertial confinement fusion (ICF). The time and space profile of the ion beams, focused by the plasma lens to diameters of a minimum of 0.5 mm in order to obtain specific energy depositions of up to about 4 kJ/g, were measured to calculate the energy deposition in the target. In the present work, the plasmas created by ion beam interaction with cryogenic gas crystals and metallic targets are studied, among other methods, by backlighting shadowgraphy and electrical conductivity measurements. The experiments are coupled with two-dimensional hydrodynamic simulations.


Author(s):  
Yongtao Zhao ◽  
Rui Cheng ◽  
Yuyu Wang ◽  
Xianming Zhou ◽  
Yu Lei ◽  
...  

Abstract Recent research activities relevant to high energy density physics (HEDP) driven by the heavy ion beam at the Institute of Modern Physics, Chinese Academy of Sciences are presented. Radiography of static objects with the fast extracted high energy carbon ion beam from the Cooling Storage Ring is discussed. Investigation of the low energy heavy ion beam and plasma interaction is reported. With HEDP research as one of the main goals, the project HIAF (High Intensity heavy-ion Accelerator Facility), proposed by the Institute of Modern Physics as the 12th five-year-plan of China, is introduced.


2006 ◽  
Vol 39 (17) ◽  
pp. 4743-4747 ◽  
Author(s):  
S Udrea ◽  
N Shilkin ◽  
V E Fortov ◽  
D H H Hoffmann ◽  
J Jacoby ◽  
...  

2010 ◽  
Author(s):  
E Henestroza ◽  
M Leitner ◽  
B G Logan ◽  
R M More ◽  
P K Roy ◽  
...  

2018 ◽  
Vol 36 (4) ◽  
pp. 507-512 ◽  
Author(s):  
J. Domański ◽  
J. Badziak ◽  
M. Marchwiany

AbstractThis paper presents the results of numerical investigations into the acceleration of heavy ions by a multi-PW laser pulse of ultra-relativistic intensity, to be available with the Extreme Light Infrastructure lasers currently being built in Europe. In the numerical simulations, performed with the use of a multi-dimensional (2D3V) particle-in-cell code, the thorium target with a thickness of 50 or 200 nm was irradiated by a circularly polarized 20 fs laser pulse with an energy of ~150 J and an intensity of 1023 W/cm2. It was found that the detailed run of the ion acceleration process depends on the target thickness, though in both considered cases the radiation pressure acceleration (RPA) stage of ion acceleration is followed by a sheath acceleration stage, with a significant role in the post-RPA stage being played by the ballistic movement of ions. This hybrid acceleration mechanism leads to the production of an ultra-short (sub-picosecond) multi-GeV ion beam with a wide energy spectrum and an extremely high intensity (>1021 W/cm2) and ion fluence (>1017 cm−2). Heavy ion beams of such extreme parameters are hardly achievable in conventional RF-driven ion accelerators, so they could open the avenues to new areas of research in nuclear and high energy density physics, and possibly in other scientific domains.


2002 ◽  
Vol 20 (3) ◽  
pp. 393-397 ◽  
Author(s):  
N.A. TAHIR ◽  
A. SHUTOV ◽  
D. VARENTSOV ◽  
D.H.H. HOFFMANN ◽  
P. SPILLER ◽  
...  

This paper presents two-dimensional numerical simulations of heating of matter with intense heavy ion beams. It has been shown that it is very advantageous to irradiate the target with two different beams simultaneously, a main high intensity bunched beam of a heavy element like uranium and an unbunched low intensity beam of a lighter element like argon. The main beam is used to heat the target while the second beam is used as a diagnostic tool.Influence of the shape of the focal spot on compression and heating of matter has also been studied using an elliptic focal spot with an ellipticity of 1.5 (semimajor axis is along y-axis and is 1.5 times the semiminor axis which is along x-axis). It has been found that the temporal behavior of the development of density, pressure, and temperature profiles along different directions is quite different, which is not the case with a circular focal spot.


Sign in / Sign up

Export Citation Format

Share Document