scholarly journals Laser-driven acceleration of heavy ions at ultra-relativistic laser intensity

2018 ◽  
Vol 36 (4) ◽  
pp. 507-512 ◽  
Author(s):  
J. Domański ◽  
J. Badziak ◽  
M. Marchwiany

AbstractThis paper presents the results of numerical investigations into the acceleration of heavy ions by a multi-PW laser pulse of ultra-relativistic intensity, to be available with the Extreme Light Infrastructure lasers currently being built in Europe. In the numerical simulations, performed with the use of a multi-dimensional (2D3V) particle-in-cell code, the thorium target with a thickness of 50 or 200 nm was irradiated by a circularly polarized 20 fs laser pulse with an energy of ~150 J and an intensity of 1023 W/cm2. It was found that the detailed run of the ion acceleration process depends on the target thickness, though in both considered cases the radiation pressure acceleration (RPA) stage of ion acceleration is followed by a sheath acceleration stage, with a significant role in the post-RPA stage being played by the ballistic movement of ions. This hybrid acceleration mechanism leads to the production of an ultra-short (sub-picosecond) multi-GeV ion beam with a wide energy spectrum and an extremely high intensity (>1021 W/cm2) and ion fluence (>1017 cm−2). Heavy ion beams of such extreme parameters are hardly achievable in conventional RF-driven ion accelerators, so they could open the avenues to new areas of research in nuclear and high energy density physics, and possibly in other scientific domains.

Author(s):  
Yongtao Zhao ◽  
Rui Cheng ◽  
Yuyu Wang ◽  
Xianming Zhou ◽  
Yu Lei ◽  
...  

Abstract Recent research activities relevant to high energy density physics (HEDP) driven by the heavy ion beam at the Institute of Modern Physics, Chinese Academy of Sciences are presented. Radiography of static objects with the fast extracted high energy carbon ion beam from the Cooling Storage Ring is discussed. Investigation of the low energy heavy ion beam and plasma interaction is reported. With HEDP research as one of the main goals, the project HIAF (High Intensity heavy-ion Accelerator Facility), proposed by the Institute of Modern Physics as the 12th five-year-plan of China, is introduced.


2006 ◽  
Vol 24 (4) ◽  
pp. 541-551 ◽  
Author(s):  
F. BECKER ◽  
A. HUG ◽  
P. FORCK ◽  
M. KULISH ◽  
P. NI ◽  
...  

An intense and focused heavy ion beam is a suitable tool to generate high energy density in matter. To compare results with simulations it is essential to know beam parameters as intensity, longitudinal, and transversal profile at the focal plane. Since the beam's energy deposition will melt and evaporate even tungsten, non-intercepting diagnostics are required. Therefore a capacitive pickup with high resolution in both time and space was designed, built and tested at the high temperature experimental area at GSI. Additionally a beam induced fluorescence monitor was investigated for the synchrotron's (SIS-18) energy-regime (60–750 AMeV) and successfully tested in a beam-transfer-line.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
K. Weichman ◽  
J. J. Santos ◽  
S. Fujioka ◽  
T. Toncian ◽  
A. V. Arefiev

Abstract We present the first 3D fully kinetic simulations of laser driven sheath-based ion acceleration with a kilotesla-level applied magnetic field. The application of a strong magnetic field significantly and beneficially alters sheath based ion acceleration and creates two distinct stages in the acceleration process associated with the time-evolving magnetization of the hot electron sheath. The first stage delivers dramatically enhanced acceleration, and the second reverses the typical outward-directed topology of the sheath electric field into a focusing configuration. The net result is a focusing, magnetic field-directed ion source of multiple species with strongly enhanced energy and number. The predicted improvements in ion source characteristics are desirable for applications and suggest a route to experimentally confirm magnetization-related effects in the high energy density regime. We additionally perform a comparison between 2D and 3D simulation geometry, on which basis we predict the feasibility of observing magnetic field effects under experimentally relevant conditions.


2006 ◽  
Vol 39 (17) ◽  
pp. 4743-4747 ◽  
Author(s):  
S Udrea ◽  
N Shilkin ◽  
V E Fortov ◽  
D H H Hoffmann ◽  
J Jacoby ◽  
...  

2005 ◽  
Author(s):  
R.C. Davidson ◽  
B.G. Logan ◽  
J.J. Barnard ◽  
F.M. Bieniosek ◽  
R.J. Briggs ◽  
...  

2002 ◽  
Vol 20 (3) ◽  
pp. 485-491 ◽  
Author(s):  
D. VARENTSOV ◽  
P. SPILLER ◽  
N.A. TAHIR ◽  
D.H.H. HOFFMANN ◽  
C. CONSTANTIN ◽  
...  

At the Gesellschaft für Schwerionenforschung (GSI, Darmstadt) intense beams of energetic heavy ions have been used to generate high-energy-density (HED) state in matter by impact on solid targets. Recently, we have developed a new method by which we use the same heavy ion beam that heats the target to provide information about the physical state of the interior of the target (Varentsov et al., 2001). This is accomplished by measuring the energy loss dynamics (ELD) of the beam emerging from the back surface of the target. For this purpose, a new time-resolving energy loss spectrometer (scintillating Bragg-peak (SBP) spectrometer) has been developed. In our experiments we have measured energy loss dynamics of intense beams of 238U, 86Kr, 40Ar, and 18O ions during the interaction with solid rare-gas targets, such as solid Ne and solid Xe. We observed continuous reduction in the energy loss during the interaction time due to rapid hydrodynamic response of the ion-beam-heated target matter. These are the first measurements of this kind. Two-dimensional hydrodynamic simulations were carried out using the beam and target parameters of the experiments. The conducted research has established that the ELD measurement technique is an excellent diagnostic method for HED matter. It specifically allows for direct and quantitative comparison with the results of hydrodynamic simulations, providing experimental data for verification of computer codes and underlying theoretical models. The ELD measurements will be used as a standard diagnostics in the future experiments on investigation of the HED matter induced by intense heavy ion beams, such as the HI-HEX (Heavy Ion Heating and EXpansion) EOS studies (Hoffmann et al., 2002).


2018 ◽  
Vol 167 ◽  
pp. 01004 ◽  
Author(s):  
Jaroslaw Domanski ◽  
Jan Badziak

One of the key scientific projects of ELI-Nuclear Physics is to study the production of extremely neutron-rich nuclides by a new reaction mechanism called fission-fusion using laser-accelerated thorium (232Th) ions. This research is of crucial importance for understanding the nature of the creation of heavy elements in the Universe; however, they require Th ion beams of very high beam fluencies and intensities which are inaccessible in conventional accelerators. This contribution is a first attempt to investigate the possibility of the generation of intense Th ion beams by a fs laser pulse of ultra-relativistic intensity. The investigation was performed with the use of fully electromagnetic relativistic particle-in-cell code. A sub-μm thorium target was irradiated by a circularly polarized 20-fs laser pulse of intensity up to 1023 W/cm2, predicted to be attainable at ELI-NP. At the laser intensity ~ 1023 W/cm2 and an optimum target thickness, the maximum energies of Th ions approach 9.3 GeV, the ion beam intensity is > 1020 W/cm2 and the total ion fluence reaches values ~ 1019 ions/cm2. The last two values are much higher than attainable in conventional accelerators and are fairly promising for the planned ELI-NP experiment.


Sign in / Sign up

Export Citation Format

Share Document